提交 21e6f5fb 编写于 作者: J Jiawei Wang 提交者: wangjiawei04

Merge pull request #923 from wangjiawei04/0.4_readme

[WIP] 0.4 index page readme
上级 f2691e95
......@@ -45,10 +45,11 @@ nvidia-docker exec -it test bash
```
```shell
pip install paddle-serving-client==0.3.2
pip install paddle-serving-server==0.3.2 # CPU
pip install paddle-serving-server-gpu==0.3.2.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.3.2.post10 # GPU with CUDA10.0
pip install paddle-serving-client==0.4.0
pip install paddle-serving-server==0.4.0 # CPU
pip install paddle-serving-server-gpu==0.4.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.4.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.4.0.trt # GPU with CUDA10.1+TensorRT
```
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download.
......@@ -57,7 +58,7 @@ If you need install modules compiled with develop branch, please download packag
Packages of paddle-serving-server and paddle-serving-server-gpu support Centos 6/7, Ubuntu 16/18, Windows 10.
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.6/3.7.
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.5/3.6/3.7.
Recommended to install paddle >= 1.8.4.
......@@ -113,11 +114,11 @@ tar -xzf uci_housing.tar.gz
Paddle Serving provides HTTP and RPC based service for users to access
### HTTP service
### RPC service
Paddle Serving provides a built-in python module called `paddle_serving_server.serve` that can start a RPC service or a http service with one-line command. If we specify the argument `--name uci`, it means that we will have a HTTP service with a url of `$IP:$PORT/uci/prediction`
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```
<center>
......@@ -125,39 +126,24 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
|--------------|------|-----------|--------------------------------|
| `thread` | int | `4` | Concurrency of current service |
| `port` | int | `9292` | Exposed port of current service to users|
| `name` | str | `""` | Service name, can be used to generate HTTP request url |
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim_off` | - | - | Disable memory / graphic memory optimization |
| `ir_optim` | - | - | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT |
Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
</center>
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
### RPC service
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```
``` python
# A user can visit rpc service through paddle_serving_client API
from paddle_serving_client import Client
import numpy as np
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
fetch_map = client.predict(feed={"x": np.array(data).reshape(1,13,1)}, fetch=["price"])
print(fetch_map)
```
Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training.
......@@ -169,6 +155,40 @@ Here, `client.predict` function has two arguments. `feed` is a `python dict` wit
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as Golang, C++ and python.
### WEB service
Users can also put the data format processing logic on the server side, so that they can directly use curl to access the service, refer to the following case whose path is `python/examples/fit_a_line`
```python
from paddle_serving_server.web_service import WebService
import numpy as np
class UciService(WebService):
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
uci_service = UciService(name="uci")
uci_service.load_model_config("uci_housing_model")
uci_service.prepare_server(workdir="workdir", port=9292)
uci_service.run_rpc_service()
uci_service.run_web_service()
```
for client side,
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
the response is
```
{"result":{"price":[[18.901151657104492]]}}
```
<h2 align="center">Document</h2>
### New to Paddle Serving
......
......@@ -47,10 +47,11 @@ nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/se
nvidia-docker exec -it test bash
```
```shell
pip install paddle-serving-client==0.3.2
pip install paddle-serving-server==0.3.2 # CPU
pip install paddle-serving-server-gpu==0.3.2.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.3.2.post10 # GPU with CUDA10.0
pip install paddle-serving-client==0.4.0
pip install paddle-serving-server==0.4.0 # CPU
pip install paddle-serving-server-gpu==0.4.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.4.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.4.0.trt # GPU with CUDA10.1+TensorRT
```
您可能需要使用国内镜像源(例如清华源, 在pip命令中添加`-i https://pypi.tuna.tsinghua.edu.cn/simple`)来加速下载。
......@@ -107,13 +108,12 @@ tar -xzf uci_housing.tar.gz
Paddle Serving 为用户提供了基于 HTTP 和 RPC 的服务
<h3 align="center">RPC服务</h3>
<h3 align="center">HTTP服务</h3>
Paddle Serving提供了一个名为`paddle_serving_server.serve`的内置python模块,可以使用单行命令启动RPC服务或HTTP服务。如果我们指定参数`--name uci`,则意味着我们将拥有一个HTTP服务,其URL为$IP:$PORT/uci/prediction`。
用户还可以使用`paddle_serving_server.serve`启动RPC服务。 尽管用户需要基于Paddle Serving的python客户端API进行一些开发,但是RPC服务通常比HTTP服务更快。需要指出的是这里我们没有指定`--name`
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```
<center>
......@@ -128,21 +128,10 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT |
我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文档 [requests](https://requests.readthedocs.io/en/master/)。
我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文
[requests](https://requests.readthedocs.io/en/master/)
</center>
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
<h3 align="center">RPC服务</h3>
用户还可以使用`paddle_serving_server.serve`启动RPC服务。 尽管用户需要基于Paddle Serving的python客户端API进行一些开发,但是RPC服务通常比HTTP服务更快。需要指出的是这里我们没有指定`--name`。
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```
``` python
# A user can visit rpc service through paddle_serving_client API
from paddle_serving_client import Client
......@@ -152,12 +141,45 @@ client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
fetch_map = client.predict(feed={"x": np.array(data).reshape(1,13,1)}, fetch=["price"])
print(fetch_map)
```
在这里,`client.predict`函数具有两个参数。 `feed`是带有模型输入变量别名和值的`python dict``fetch`被要从服务器返回的预测变量赋值。 在该示例中,在训练过程中保存可服务模型时,被赋值的tensor名为`"x"``"price"`
<h3 align="center">HTTP服务</h3>
用户也可以将数据格式处理逻辑放在服务器端进行,这样就可以直接用curl去访问服务,参考如下案例,在目录``python/examples/fit_a_line``
```python
from paddle_serving_server.web_service import WebService
import numpy as np
class UciService(WebService):
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
uci_service = UciService(name="uci")
uci_service.load_model_config("uci_housing_model")
uci_service.prepare_server(workdir="workdir", port=9292)
uci_service.run_rpc_service()
uci_service.run_web_service()
```
客户端输入
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
返回结果
```
{"result":{"price":[[18.901151657104492]]}}
```
<h2 align="center">Paddle Serving的核心功能</h2>
- 与Paddle训练紧密连接,绝大部分Paddle模型可以 **一键部署**.
......
......@@ -42,7 +42,7 @@ python -m paddle_serving_app.package --get_model ocr_rec
tar -xzvf ocr_rec.tar.gz
python -m paddle_serving_app.package --get_model ocr_det
tar -xzvf ocr_det.tar.gz
python ocr_debugger_server.py &
python ocr_debugger_server.py cpu &
python ocr_web_client.py
```
......
......@@ -42,7 +42,7 @@ python -m paddle_serving_app.package --get_model ocr_rec
tar -xzvf ocr_rec.tar.gz
python -m paddle_serving_app.package --get_model ocr_det
tar -xzvf ocr_det.tar.gz
python ocr_debugger_server.py &
python ocr_debugger_server.py cpu &
python ocr_web_client.py
```
......
......@@ -14,12 +14,6 @@ sh get_data.sh
### Start server
``` shell
python test_server.py uci_housing_model/
```
You can also start the default RPC service with the following line of code:
```shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393
```
......@@ -40,7 +34,7 @@ python test_client.py uci_housing_client/serving_client_conf.prototxt
Start a web service with default web service hosting modules:
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --name uci
python test_server.py
```
### Client prediction
......
......@@ -41,7 +41,7 @@ python test_client.py uci_housing_client/serving_client_conf.prototxt
通过下面的一行代码开启默认web服务:
``` shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --name uci
python test_server.py
```
### 客户端预测
......
......@@ -15,6 +15,7 @@
from paddle_serving_client import Client
import sys
import numpy as np
client = Client()
client.load_client_config(sys.argv[1])
......@@ -27,7 +28,6 @@ test_reader = paddle.batch(
batch_size=1)
for data in test_reader():
import numpy as np
new_data = np.zeros((1, 1, 13)).astype("float32")
new_data[0] = data[0][0]
fetch_map = client.predict(
......
......@@ -13,24 +13,24 @@
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import Server
from paddle_serving_server.web_service import WebService
import numpy as np
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(response_op)
class UciService(WebService):
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
uci_service = UciService(name="uci")
uci_service.load_model_config("uci_housing_model")
uci_service.prepare_server(workdir="workdir", port=9292)
uci_service.run_rpc_service()
uci_service.run_web_service()
......@@ -25,7 +25,9 @@ from .version import serving_server_version
from contextlib import closing
import argparse
import collections
import fcntl
import sys
if sys.platform.startswith('win') is False:
import fcntl
import shutil
import numpy as np
import grpc
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册