未验证 提交 1bba3a42 编写于 作者: D Dong Daxiang 提交者: GitHub

Update DESIGN_DOC.md

上级 b99d021e
......@@ -64,7 +64,18 @@ op_seq_maker.add_op(general_response_op)
</center>
#### 2.1.3 客户端访问API
客户端访问远程服务的API非常简单
Paddle Serving支持远程服务访问的协议一种是基于RPC,另一种是HTTP。用户通过RPC访问,可以使用Paddle Serving提供的Python Client API,通过定制输入数据的格式来实现服务访问。下面的例子解释Paddle Serving Client如何定义输入数据。保存可部署模型时需要指定每个输入的别名,例如`sparse``dense`,对应的数据可以是离散的ID序列`[1, 1001, 100001]`,也可以是稠密的向量`[0.2, 0.5, 0.1, 0.4, 0.11, 0.22]`。当前Client的设计,对于离散的ID序列,支持Paddle中的`lod_level=0``lod_level=1`的情况,即张量以及一维变长张量。对于稠密的向量,支持`N-D Tensor`。用户不想要显式指定输入数据的形状,Paddle Serving的Client API会通过保存配置时记录的输入形状进行对应的检查。
``` python
feed_dict["sparse"] = [1, 1001, 100001]
feed_dict["dense"] = [0.2, 0.5, 0.1, 0.4, 0.11, 0.22]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
```
Client链接Server的代码,通常只需要加载保存模型时保存的Client端配置,以及指定要去访问的服务端点即可。为了保持内部访问进行数据并行的扩展能力,Paddle Serving Client允许定义多个服务端点。
``` python
client = Client()
client.load_client_config('servable_client_configs')
client.connect(["127.0.0.1:9292"])
```
### 2.2 底层通信机制
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册