Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
1ba49a3f
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1ba49a3f
编写于
5月 31, 2021
作者:
J
Jiawei Wang
提交者:
GitHub
5月 31, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1267 from bjjwwang/uni_benchmark
add benchmark script
上级
cf81c55c
e327951f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
403 addition
and
7 deletion
+403
-7
python/examples/pipeline/PaddleClas/DarkNet53/benchmark.sh
python/examples/pipeline/PaddleClas/DarkNet53/benchmark.sh
+4
-4
python/paddle_serving_client/utils/__init__.py
python/paddle_serving_client/utils/__init__.py
+3
-3
python/paddle_serving_server/benchmark_utils.py
python/paddle_serving_server/benchmark_utils.py
+281
-0
python/paddle_serving_server/parse_profile.py
python/paddle_serving_server/parse_profile.py
+115
-0
未找到文件。
python/examples/pipeline/PaddleClas/DarkNet53/benchmark.sh
浏览文件 @
1ba49a3f
...
...
@@ -15,7 +15,7 @@ for thread_num in 1 2 4 8 12 16
do
for
batch_size
in
1
do
echo
"----
${
modelname
}
thread num:
${
thread_num
}
batch size:
${
batch_size
}
mode:http ----"
>>
profile_log_
$modelname
echo
"
#
----
${
modelname
}
thread num:
${
thread_num
}
batch size:
${
batch_size
}
mode:http ----"
>>
profile_log_
$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
...
...
@@ -23,15 +23,15 @@ do
# --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
nvidia-smi
--id
=
3
--query-gpu
=
memory.used
--format
=
csv
-lms
1000
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
3
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
1000
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTIL
IZATION
:', cpu_utilization)
\n
"
>
cpu_utilization.py
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTIL:', cpu_utilization)
\n
"
>
cpu_utilization.py
# Start http client
python3 benchmark.py run http
$thread_num
$batch_size
>
profile 2>&1
# Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
python3 cpu_utilization.py
>>
profile_log_
$modelname
grep
-av
'^0 %'
gpu_utilization.log
>
gpu_utilization.log.tmp
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "
MAX_GPU_MEMORY
:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
-F
' '
'{sum+=$1} END {print "GPU_UTIL
IZATION
:", sum/NR, sum, NR }'
gpu_utilization.log.tmp
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "
GPU_MEM
:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
-F
' '
'{sum+=$1} END {print "GPU_UTIL:", sum/NR, sum, NR }'
gpu_utilization.log.tmp
>>
profile_log_
$modelname
# Show profiles
python3 ../../../util/show_profile.py profile
$thread_num
>>
profile_log_
$modelname
...
...
python/paddle_serving_client/utils/__init__.py
浏览文件 @
1ba49a3f
...
...
@@ -41,9 +41,9 @@ def show_latency(latency_list):
info
=
"latency:
\n
"
info
+=
"mean: {}ms
\n
"
.
format
(
np
.
mean
(
latency_array
))
info
+=
"median: {}ms
\n
"
.
format
(
np
.
median
(
latency_array
))
info
+=
"80
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
80
))
info
+=
"90
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
90
))
info
+=
"99
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
99
))
info
+=
"80
_
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
80
))
info
+=
"90
_
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
90
))
info
+=
"99
_
percent: {}ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
99
))
sys
.
stderr
.
write
(
info
)
...
...
python/paddle_serving_server/benchmark_utils.py
0 → 100644
浏览文件 @
1ba49a3f
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
time
import
logging
import
paddle
import
paddle.inference
as
paddle_infer
from
pathlib
import
Path
CUR_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
#LOG_PATH_ROOT = f"{CUR_DIR}/../../tools/output"
LOG_PATH_ROOT
=
f
"."
class
PaddleInferBenchmark
(
object
):
def
__init__
(
self
,
config
,
model_info
:
dict
=
{},
data_info
:
dict
=
{},
perf_info
:
dict
=
{},
resource_info
:
dict
=
{},
**
kwargs
):
"""
Construct PaddleInferBenchmark Class to format logs.
args:
config(paddle.inference.Config): paddle inference config
model_info(dict): basic model info
{'model_name': 'resnet50'
'precision': 'fp32'}
data_info(dict): input data info
{'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info(dict): performance result
{'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info(dict):
cpu and gpu resources
{'cpu_rss': 100
'gpu_rss': 100
'gpu_util': 60}
"""
# PaddleInferBenchmark Log Version
self
.
log_version
=
"1.0.3"
# Paddle Version
self
.
paddle_version
=
paddle
.
__version__
self
.
paddle_commit
=
paddle
.
__git_commit__
paddle_infer_info
=
paddle_infer
.
get_version
()
self
.
paddle_branch
=
paddle_infer_info
.
strip
().
split
(
': '
)[
-
1
]
# model info
self
.
model_info
=
model_info
# data info
self
.
data_info
=
data_info
# perf info
self
.
perf_info
=
perf_info
try
:
# required value
self
.
model_name
=
model_info
[
'model_name'
]
self
.
precision
=
model_info
[
'precision'
]
self
.
batch_size
=
data_info
[
'batch_size'
]
self
.
shape
=
data_info
[
'shape'
]
self
.
data_num
=
data_info
[
'data_num'
]
self
.
inference_time_s
=
round
(
perf_info
[
'inference_time_s'
],
4
)
except
:
self
.
print_help
()
raise
ValueError
(
"Set argument wrong, please check input argument and its type"
)
self
.
preprocess_time_s
=
perf_info
.
get
(
'preprocess_time_s'
,
0
)
self
.
postprocess_time_s
=
perf_info
.
get
(
'postprocess_time_s'
,
0
)
self
.
total_time_s
=
perf_info
.
get
(
'total_time_s'
,
0
)
self
.
inference_time_s_90
=
perf_info
.
get
(
"inference_time_s_90"
,
0
)
self
.
inference_time_s_99
=
perf_info
.
get
(
"inference_time_s_99"
,
0
)
self
.
succ_rate
=
perf_info
.
get
(
"succ_rate"
,
""
)
self
.
qps
=
perf_info
.
get
(
"qps"
,
""
)
# conf info
self
.
config_status
=
self
.
parse_config
(
config
)
# mem info
if
isinstance
(
resource_info
,
dict
):
self
.
cpu_rss_mb
=
int
(
"-1"
if
'cpu_rss_mb'
not
in
resource_info
or
resource_info
.
get
(
'cpu_rss_mb'
).
strip
()
==
""
else
resource_info
.
get
(
'cpu_rss_mb'
,
0
))
self
.
cpu_vms_mb
=
int
(
"-1"
if
'cpu_vms_mb'
not
in
resource_info
or
resource_info
.
get
(
'cpu_vms_mb'
).
strip
()
==
""
else
resource_info
.
get
(
'cpu_vms_mb'
,
0
))
self
.
cpu_shared_mb
=
int
(
"-1"
if
'cpu_shared_mb'
not
in
resource_info
or
resource_info
.
get
(
'cpu_shared_mb'
).
strip
()
==
""
else
resource_info
.
get
(
'cpu_shared_mb'
,
0
))
self
.
cpu_dirty_mb
=
int
(
"-1"
if
'cpu_dirty_mb'
not
in
resource_info
or
resource_info
.
get
(
'cpu_dirty_mb'
).
strip
()
==
""
else
resource_info
.
get
(
'cpu_dirty_mb'
,
0
))
self
.
cpu_util
=
round
(
resource_info
.
get
(
'cpu_util'
,
0
),
2
)
self
.
gpu_rss_mb
=
int
(
"-1"
if
'gpu_rss_mb'
not
in
resource_info
or
resource_info
.
get
(
'gpu_rss_mb'
).
strip
()
==
""
else
resource_info
.
get
(
'gpu_rss_mb'
,
0
))
#self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
self
.
gpu_util
=
resource_info
.
get
(
'gpu_util'
,
0
)
#self.gpu_mem_util = round(resource_info.get('gpu_mem_util', 0), 2)
self
.
gpu_mem_util
=
resource_info
.
get
(
'gpu_mem_util'
,
0
)
else
:
self
.
cpu_rss_mb
=
0
self
.
cpu_vms_mb
=
0
self
.
cpu_shared_mb
=
0
self
.
cpu_dirty_mb
=
0
self
.
cpu_util
=
0
self
.
gpu_rss_mb
=
0
self
.
gpu_util
=
0
self
.
gpu_mem_util
=
0
# init benchmark logger
self
.
benchmark_logger
()
def
benchmark_logger
(
self
):
"""
benchmark logger
"""
# remove other logging handler
for
handler
in
logging
.
root
.
handlers
[:]:
logging
.
root
.
removeHandler
(
handler
)
# Init logger
FORMAT
=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
log_output
=
f
"
{
LOG_PATH_ROOT
}
/
{
self
.
model_name
}
.log"
Path
(
f
"
{
LOG_PATH_ROOT
}
"
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
handlers
=
[
logging
.
FileHandler
(
filename
=
log_output
,
mode
=
'w'
),
logging
.
StreamHandler
(),
])
self
.
logger
=
logging
.
getLogger
(
__name__
)
self
.
logger
.
info
(
f
"Paddle Inference benchmark log will be saved to
{
log_output
}
"
)
def
parse_config
(
self
,
config
)
->
dict
:
"""
parse paddle predictor config
args:
config(paddle.inference.Config): paddle inference config
return:
config_status(dict): dict style config info
"""
if
isinstance
(
config
,
paddle_infer
.
Config
):
config_status
=
{}
config_status
[
'runtime_device'
]
=
"gpu"
if
config
.
use_gpu
(
)
else
"cpu"
config_status
[
'ir_optim'
]
=
config
.
ir_optim
()
config_status
[
'enable_tensorrt'
]
=
config
.
tensorrt_engine_enabled
()
config_status
[
'precision'
]
=
self
.
precision
config_status
[
'enable_mkldnn'
]
=
config
.
mkldnn_enabled
()
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
cpu_math_library_num_threads
(
)
elif
isinstance
(
config
,
dict
):
config_status
=
{}
config_status
[
'runtime_device'
]
=
config
.
get
(
'runtime_device'
,
""
)
config_status
[
'ir_optim'
]
=
config
.
get
(
'ir_optim'
,
""
)
config_status
[
'enable_tensorrt'
]
=
config
.
get
(
'enable_tensorrt'
,
""
)
config_status
[
'precision'
]
=
config
.
get
(
'precision'
,
""
)
config_status
[
'enable_mkldnn'
]
=
config
.
get
(
'enable_mkldnn'
,
""
)
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
get
(
'cpu_math_library_num_threads'
,
""
)
else
:
self
.
print_help
()
raise
ValueError
(
"Set argument config wrong, please check input argument and its type"
)
return
config_status
def
report
(
self
,
identifier
=
None
):
"""
print log report
args:
identifier(string): identify log
"""
if
identifier
:
identifier
=
f
"[
{
identifier
}
]"
else
:
identifier
=
""
self
.
logger
.
info
(
"
\n
"
)
self
.
logger
.
info
(
"---------------------- Paddle info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_version:
{
self
.
paddle_version
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_commit:
{
self
.
paddle_commit
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_branch:
{
self
.
paddle_branch
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
log_api_version:
{
self
.
log_version
}
"
)
self
.
logger
.
info
(
"----------------------- Conf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
runtime_device:
{
self
.
config_status
[
'runtime_device'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
ir_optim:
{
self
.
config_status
[
'ir_optim'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_memory_optim:
{
True
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_tensorrt:
{
self
.
config_status
[
'enable_tensorrt'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_mkldnn:
{
self
.
config_status
[
'enable_mkldnn'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_math_library_num_threads:
{
self
.
config_status
[
'cpu_math_library_num_threads'
]
}
"
)
self
.
logger
.
info
(
"----------------------- Model info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
model_name:
{
self
.
model_name
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
precision:
{
self
.
precision
}
"
)
self
.
logger
.
info
(
"----------------------- Data info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
batch_size:
{
self
.
batch_size
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
input_shape:
{
self
.
shape
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
data_num:
{
self
.
data_num
}
"
)
self
.
logger
.
info
(
"----------------------- Perf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_rss(MB):
{
self
.
cpu_rss_mb
}
, cpu_vms:
{
self
.
cpu_vms_mb
}
, cpu_shared_mb:
{
self
.
cpu_shared_mb
}
, cpu_dirty_mb:
{
self
.
cpu_dirty_mb
}
, cpu_util:
{
self
.
cpu_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
gpu_rss(MB):
{
self
.
gpu_rss_mb
}
, gpu_util:
{
self
.
gpu_util
}
%, gpu_mem_util:
{
self
.
gpu_mem_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
total time spent(s):
{
self
.
total_time_s
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
preprocess_time(ms):
{
self
.
preprocess_time_s
}
, inference_time(ms):
{
self
.
inference_time_s
}
, postprocess_time(ms):
{
self
.
postprocess_time_s
}
"
)
if
self
.
inference_time_s_90
:
self
.
logger
.
info
(
f
"
{
identifier
}
90%_cost:
{
self
.
inference_time_s_90
}
, 99%_cost:
{
self
.
inference_time_s_99
}
, succ_rate:
{
self
.
succ_rate
}
"
)
if
self
.
qps
:
self
.
logger
.
info
(
f
"
{
identifier
}
QPS:
{
self
.
qps
}
"
)
def
print_help
(
self
):
"""
print function help
"""
print
(
"""Usage:
==== Print inference benchmark logs. ====
config = paddle.inference.Config()
model_info = {'model_name': 'resnet50'
'precision': 'fp32'}
data_info = {'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info = {'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info = {'cpu_rss_mb': 100
'gpu_rss_mb': 100
'gpu_util': 60}
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
log('Test')
"""
)
def
__call__
(
self
,
identifier
=
None
):
"""
__call__
args:
identifier(string): identify log
"""
self
.
report
(
identifier
)
python/paddle_serving_server/parse_profile.py
0 → 100644
浏览文件 @
1ba49a3f
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
os
import
yaml
import
argparse
from
.benchmark_utils
import
PaddleInferBenchmark
"""
{'CPU_UTILIZATION': 0.8, 'MAX_GPU_MEMORY': 0, 'GPU_UTILIZATION': '0 %', 'DAG': {'50': 670.256, '60': 670.256, '70': 670.765, '80': 671.23, '90': 687.546, '95': 687.546, '99': 687.546, 'avg': 670.755625, 'qps': 0.8, 'query_count': 8, 'succ': 1.0}, 'demo': {'midp': 669.484375, 'postp': 0.184875, 'prep': 1.001875}}
"""
class
LogHandler
(
object
):
def
__init__
(
self
):
self
.
fstr
=
""
def
print
(
self
):
print
(
self
.
fstr
)
def
dump
(
self
,
filename
):
with
open
(
filename
,
'w'
)
as
fout
:
fout
.
write
(
self
.
fstr
)
def
append
(
self
,
new_str
):
self
.
fstr
+=
new_str
+
"
\n
"
def
handle_benchmark
(
benchmark_config
,
benchmark_raw
,
indentifier
):
model_info
=
{
'model_name'
:
benchmark_config
[
"model_name"
],
'precision'
:
benchmark_config
[
"precision"
]
}
data_info
=
{
'batch_size'
:
benchmark_config
[
"batch_size"
],
'shape'
:
benchmark_config
[
"input_shape"
],
'data_num'
:
benchmark_config
[
"num_of_samples"
]
}
perf_info
=
{
'preprocess_time_s'
:
""
,
'inference_time_s'
:
float
(
benchmark_raw
[
"median"
][
0
:
-
2
])
/
1000
,
# *** ms
'postprocess_time_s'
:
""
,
'total_time_s'
:
""
,
'inference_time_s_90'
:
float
(
benchmark_raw
[
"90_percent"
][
0
:
-
2
])
/
1000
,
# *** ms
'inference_time_s_99'
:
float
(
benchmark_raw
[
"99_percent"
][
0
:
-
2
])
/
1000
,
# *** ms
'qps'
:
benchmark_raw
[
"AVG_QPS"
]
}
resource_info
=
{
'cpu_rss_mb'
:
""
,
'cpu_vms_mb'
:
""
,
'cpu_shared_mb'
:
""
,
'cpu_dirty_mb'
:
""
,
'cpu_util'
:
benchmark_raw
[
"CPU_UTIL"
],
'gpu_rss_mb'
:
""
,
'gpu_util'
:
benchmark_raw
[
"GPU_UTIL"
],
'gpu_mem_util'
:
benchmark_raw
[
"GPU_MEM"
]
}
server_log
=
PaddleInferBenchmark
(
benchmark_config
,
model_info
,
data_info
,
perf_info
,
resource_info
)
server_log
(
indentifier
)
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--benchmark_cfg"
,
type
=
str
,
required
=
True
,
help
=
"benchmark config yaml. including general info, model info, data info, conf info"
)
parser
.
add_argument
(
"--benchmark_log"
,
type
=
str
,
required
=
True
,
help
=
"benchmark log, generated by a web service or pipeline."
)
parser
.
add_argument
(
"--output"
,
type
=
str
,
default
=
"std_benchmark.log"
,
help
=
"the output filename, default std_benchmark.log"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
benchmark_cfg_filename
=
args
.
benchmark_cfg
f
=
open
(
benchmark_cfg_filename
,
'r'
)
benchmark_config
=
yaml
.
load
(
f
)
f
.
close
()
benchmark_log_filename
=
args
.
benchmark_log
f
=
open
(
benchmark_log_filename
,
'r'
)
lines
=
f
.
readlines
()
line_no
=
0
while
line_no
<
len
(
lines
):
if
len
(
lines
[
line_no
])
>
5
and
lines
[
line_no
].
startswith
(
"#---"
):
iden
=
lines
[
line_no
][
5
:
-
5
]
line_no
+=
1
sub_log
=
lines
[
line_no
:
line_no
+
13
]
sub_dict
=
yaml
.
safe_load
(
""
.
join
(
sub_log
))
handle_benchmark
(
benchmark_config
,
sub_dict
,
iden
)
line_no
+=
13
else
:
line_no
+=
1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录