未验证 提交 14eab064 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #1598 from LiuChiachi/support-string-list-input-predict

Supports prediction for string list input
......@@ -160,12 +160,12 @@ class LocalPredictor(object):
"use_trt:{}, use_lite:{}, use_xpu:{}, precision:{}, use_calib:{}, "
"use_mkldnn:{}, mkldnn_cache_capacity:{}, mkldnn_op_list:{}, "
"mkldnn_bf16_op_list:{}, use_feed_fetch_ops:{}, "
"use_ascend_cl:{}, min_subgraph_size:{}, dynamic_shape_info:{}".format(
model_path, use_gpu, gpu_id, use_profile, thread_num, mem_optim,
ir_optim, use_trt, use_lite, use_xpu, precision, use_calib,
use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, use_feed_fetch_ops, use_ascend_cl,
min_subgraph_size, dynamic_shape_info))
"use_ascend_cl:{}, min_subgraph_size:{}, dynamic_shape_info:{}".
format(model_path, use_gpu, gpu_id, use_profile, thread_num,
mem_optim, ir_optim, use_trt, use_lite, use_xpu, precision,
use_calib, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, use_feed_fetch_ops, use_ascend_cl,
min_subgraph_size, dynamic_shape_info))
self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
......@@ -236,10 +236,10 @@ class LocalPredictor(object):
kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
if len(dynamic_shape_info):
config.set_trt_dynamic_shape_info(
dynamic_shape_info['min_input_shape'],
dynamic_shape_info['max_input_shape'],
dynamic_shape_info['opt_input_shape'])
config.set_trt_dynamic_shape_info(
dynamic_shape_info['min_input_shape'],
dynamic_shape_info['max_input_shape'],
dynamic_shape_info['opt_input_shape'])
# set lite
if use_lite:
config.enable_lite_engine(
......@@ -338,7 +338,8 @@ class LocalPredictor(object):
# Assemble the input data of paddle predictor, and filter invalid inputs.
input_names = self.predictor.get_input_names()
for name in input_names:
if isinstance(feed[name], list):
if isinstance(feed[name], list) and not isinstance(feed[name][0],
str):
feed[name] = np.array(feed[name]).reshape(self.feed_shapes_[
name])
if self.feed_types_[name] == 0:
......@@ -365,6 +366,9 @@ class LocalPredictor(object):
feed[name] = feed[name].astype("complex64")
elif self.feed_types_[name] == 11:
feed[name] = feed[name].astype("complex128")
elif isinstance(feed[name], list) and isinstance(feed[name][0],
str):
pass
else:
raise ValueError("local predictor receives wrong data type")
......
......@@ -34,6 +34,7 @@ from .error_catch import CustomExceptionCode as ChannelDataErrcode
_LOGGER = logging.getLogger(__name__)
class ChannelDataType(enum.Enum):
"""
Channel data type
......@@ -167,7 +168,8 @@ class ChannelData(object):
elif isinstance(npdata, dict):
# batch_size = 1
for _, value in npdata.items():
if not isinstance(value, np.ndarray):
if not isinstance(value, np.ndarray) and not (isinstance(
value, list) and isinstance(value[0], str)):
error_code = ChannelDataErrcode.TYPE_ERROR.value
error_info = "Failed to check data: the value " \
"of data must be np.ndarray, but get {}.".format(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册