未验证 提交 104014d1 编写于 作者: J Jiawei Wang 提交者: GitHub

Create README_CN.md

上级 67f35e98
## 带稀疏参数服务器的CTR预测服务
(简体中文|[English](./README.md))
### 获取样例数据
```
sh get_data.sh
```
### 保存模型和配置文件
```
python local_train.py
```
执行脚本后会在当前目录生成ctr_server_model和ctr_client_config文件夹,以及ctr_server_model_kv, ctr_client_conf_kv。
### 启动稀疏参数服务器
```
cp ../../../build_server/core/predictor/seq_generator seq_generator
cp ../../../build_server/output/bin/cube* ./cube/
sh cube_prepare.sh &
```
此处,模型当中的稀疏参数会被存放在稀疏参数服务器Cube当中,关于稀疏参数服务器Cube的介绍,请阅读[单机版稀疏参数服务器Cube](../../../doc/CUBE_LOCAL_CN.md)
### 启动RPC预测服务,服务端线程数为4(可在test_server.py配置)
```
python test_server.py ctr_serving_model_kv
```
### 执行预测
```
python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data
```
### Benchmark
设备 :Intel(R) Xeon(R) CPU 6148 @ 2.40GHz
模型 :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/ctr_criteo_with_cube/network_conf.py)
server core/thread num : 4/8
执行
```
bash benchmark.sh
```
客户端每个线程会发送1000个batch
| client thread num | prepro | client infer | op0 | op1 | op2 | postpro | avg_latency | qps |
| ------------------ | ------ | ------------ | ------ | ----- | ------ | ------- | ----- | ----- |
| 1 | 0.035 | 1.596 | 0.021 | 0.518 | 0.0024 | 0.0025 | 6.774 | 147.7 |
| 2 | 0.034 | 1.780 | 0.027 | 0.463 | 0.0020 | 0.0023 | 6.931 | 288.3 |
| 4 | 0.038 | 2.954 | 0.025 | 0.455 | 0.0019 | 0.0027 | 8.378 | 477.5 |
| 8 | 0.044 | 8.230 | 0.028 | 0.464 | 0.0023 | 0.0034 | 14.191 | 563.8 |
| 16 | 0.048 | 21.037 | 0.028 | 0.455 | 0.0025 | 0.0041 | 27.236 | 587.5 |
平均每个线程耗时图如下
![avg cost](../../../doc/criteo-cube-benchmark-avgcost.png)
每个线程QPS耗时如下
![qps](../../../doc/criteo-cube-benchmark-qps.png)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册