提交 0fa1f54d 编写于 作者: S stephon

add pp_shitu cplusplus serving

上级 8c1dd9f6
FILE(GLOB op_srcs ${CMAKE_CURRENT_LIST_DIR}/*.cpp ${CMAKE_CURRENT_LIST_DIR}/../../predictor/tools/quant.cpp)
if(WITH_OPENCV)
FILE(GLOB ocrtools_srcs ${CMAKE_CURRENT_LIST_DIR}/../../predictor/tools/ocrtools/*.cpp)
FILE(GLOB ppshitu_tools_srcs ${CMAKE_CURRENT_LIST_DIR}/../../predictor/tools/pp_shitu_tools/*.cpp)
LIST(APPEND op_srcs ${ocrtools_srcs})
else()
set (EXCLUDE_DIR "general_detection_op.cpp")
set (EXCLUDE_DIR "general_infer_op.cpp")
set (EXCLUDE_DIR "general_feature_extract_op.cpp")
foreach (TMP_PATH ${op_srcs})
string (FIND ${TMP_PATH} ${EXCLUDE_DIR} EXCLUDE_DIR_FOUND)
if (NOT ${EXCLUDE_DIR_FOUND} EQUAL -1)
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_feature_extract_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralFeatureExtractOp::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
paddle::PaddleTensor boxes = in->at(1);
TensorVector* real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr, error";
return -1;
}
real_in->push_back(in->at(0));
if (InferManager::instance().infer(
engine_name().c_str(), real_in, out, batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
out->push_back(boxes);
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
DEFINE_OP(GeneralFeatureExtractOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralFeatureExtractOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralFeatureExtractOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_picodet_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralPicodetOp::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob* input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob* output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector* in = &input_blob->tensor_vector;
TensorVector* out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
output_blob->_batch_size = batch_size;
//get image shape
float* data = (float*)in->at(0).data.data();
int height = data[0];
int width = data[1];
VLOG(2) << "image width: " << width;
VLOG(2) << "image height: " << height;
///////////////////det preprocess begin/////////////////////////
//show raw image
unsigned char* img_data = static_cast<unsigned char*>(in->at(1).data.data());
cv::Mat origin(height, width, CV_8UC3, img_data);
// cv::imwrite("/workspace/origin_image.jpg", origin);
cv::Mat origin_img = origin.clone();
cv::cvtColor(origin, origin, cv::COLOR_BGR2RGB);
InitInfo_Run(&origin, &imgblob);
Resize_Run(&origin, &imgblob);
NormalizeImage_Run(&origin, &imgblob);
Permute_Run(&origin, &imgblob);
///////////////////det preprocess end/////////////////////////
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
//generate real_in
TensorVector* real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr, error";
return -1;
}
//generate im_shape
int in_num = 2;
size_t databuf_size = in_num * sizeof(float);
void *databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
float* databuf_float = reinterpret_cast<float*>(databuf_data);
*databuf_float = imgblob.im_shape_[0];
databuf_float++;
*databuf_float = imgblob.im_shape_[1];
char* databuf_char = reinterpret_cast<char*>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "im_shape";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 2};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
//generate scale_factor
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
databuf_float = reinterpret_cast<float*>(databuf_data);
*databuf_float = imgblob.scale_factor_[0];
databuf_float++;
*databuf_float = imgblob.scale_factor_[1];
databuf_char = reinterpret_cast<char*>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
//genarate image
in_num = imgblob.im_data_.size();
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, imgblob.im_data_.data(), databuf_size);
databuf_char = reinterpret_cast<char*>(databuf_data);
paddle::PaddleBuf paddleBuf_3(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_3;
tensor_in_3.name = "image";
tensor_in_3.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_3.shape = {1, 3, imgblob.in_net_shape_[0], imgblob.in_net_shape_[1]};
tensor_in_3.lod = in->at(0).lod;
tensor_in_3.data = paddleBuf_3;
real_in->push_back(tensor_in_3);
if (InferManager::instance().infer(
engine_name().c_str(), real_in, out, batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
///////////////////det postprocess begin/////////////////////////
//get output_data_
std::vector<float> output_data_;
int infer_outnum = out->size();
paddle::PaddleTensor element = out->at(0);
std::vector<int> element_shape = element.shape;
//get data len
int total_num = 1;
for(auto value_shape: element_shape)
{
total_num *= value_shape;
}
output_data_.resize(total_num);
float* data_out = (float*)element.data.data();
for(int j=0; j < total_num; j++)
{
output_data_[j] = data_out[j];
}
//det postprocess
//1) get detect result
if(output_data_.size() > max_detect_results * 6){
output_data_.resize(max_detect_results * 6);
}
std::vector <ObjectResult> result;
int detect_num = output_data_.size() / 6;
for(int m = 0; m < detect_num; m++)
{
// Class id
int class_id = static_cast<int>(round(output_data_[0 + m * 6]));
// Confidence score
float score = output_data_[1 + m * 6];
// Box coordinate
int xmin = (output_data_[2 + m * 6]);
int ymin = (output_data_[3 + m * 6]);
int xmax = (output_data_[4 + m * 6]);
int ymax = (output_data_[5 + m * 6]);
ObjectResult result_item;
result_item.rect = {xmin, ymin, xmax, ymax};
result_item.class_id = class_id;
result_item.confidence = score;
result.push_back(result_item);
}
//2) add the whole image
ObjectResult result_whole_img = {
{0, 0, width - 1, height - 1}, 0, 1.0};
result.push_back(result_whole_img);
//3) crop image and do preprocess. concanate the data
cv::Mat srcimg;
cv::cvtColor(origin_img, srcimg, cv::COLOR_BGR2RGB);
std::vector<float> all_data;
for (int j = 0; j < result.size(); ++j) {
int w = result[j].rect[2] - result[j].rect[0];
int h = result[j].rect[3] - result[j].rect[1];
cv::Rect rect(result[j].rect[0], result[j].rect[1], w, h);
cv::Mat crop_img = srcimg(rect);
cv::Mat resize_img;
resize_op_.Run(crop_img, resize_img, resize_short_, resize_size_);
normalize_op_.Run(&resize_img, mean_, std_, scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
permute_op_.Run(&resize_img, input.data());
for(int m = 0; m < input.size(); m++)
{
all_data.push_back(input[m]);
}
}
///////////////////det postprocess begin/////////////////////////
//generate new Tensors;
//"x"
int out_num = all_data.size();
int databuf_size_out = out_num * sizeof(float);
void *databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
if (!databuf_data_out) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
return -1;
}
memcpy(databuf_data_out, all_data.data(), databuf_size_out);
char *databuf_char_out = reinterpret_cast<char*>(databuf_data_out);
paddle::PaddleBuf paddleBuf_out(databuf_char_out, databuf_size_out);
paddle::PaddleTensor tensor_out;
tensor_out.name = "x";
tensor_out.dtype = paddle::PaddleDType::FLOAT32;
tensor_out.shape = {result.size(), 3, 224, 224};
tensor_out.data = paddleBuf_out;
tensor_out.lod = in->at(0).lod;
out->push_back(tensor_out);
//"boxes"
int box_size_out = result.size() * 6 * sizeof(float);
void *box_data_out = MempoolWrapper::instance().malloc(box_size_out);
if (!box_data_out) {
LOG(ERROR) << "Malloc failed, size: " << box_data_out;
return -1;
}
memcpy(box_data_out, out->at(0).data.data(), box_size_out - 6 * sizeof(float));
float *box_float_out = reinterpret_cast<float *>(box_data_out);
box_float_out += (result.size() - 1) * 6;
box_float_out[0] = 0.0;
box_float_out[1] = 1.0;
box_float_out[2] = 0.0;
box_float_out[3] = 0.0;
box_float_out[4] = width - 1;
box_float_out[5] = height - 1;
char *box_char_out = reinterpret_cast<char*>(box_data_out);
paddle::PaddleBuf paddleBuf_out_2(box_char_out, box_size_out);
paddle::PaddleTensor tensor_out_2;
tensor_out_2.name = "boxes";
tensor_out_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_out_2.shape = {result.size(), 6};
tensor_out_2.data = paddleBuf_out_2;
tensor_out_2.lod = in->at(0).lod;
out->push_back(tensor_out_2);
out->erase(out->begin(), out->begin() + infer_outnum);
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
DEFINE_OP(GeneralPicodetOp);
void GeneralPicodetOp::Postprocess(const std::vector <cv::Mat> mats,
std::vector <ObjectResult> *result,
std::vector<int> bbox_num,
bool is_rbox,
std::vector<float> output_data_,
std::vector<int> out_bbox_num_data_){
result->clear();
int start_idx = 0;
for (int im_id = 0; im_id < mats.size(); im_id++) {
cv::Mat raw_mat = mats[im_id];
int rh = 1;
int rw = 1;
for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
if (is_rbox) {
// Class id + score + 8 parameters
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
// Confidence score
float score = output_data_[1 + j * 10];
int x1 = (output_data_[2 + j * 10] * rw);
int y1 = (output_data_[3 + j * 10] * rh);
int x2 = (output_data_[4 + j * 10] * rw);
int y2 = (output_data_[5 + j * 10] * rh);
int x3 = (output_data_[6 + j * 10] * rw);
int y3 = (output_data_[7 + j * 10] * rh);
int x4 = (output_data_[8 + j * 10] * rw);
int y4 = (output_data_[9 + j * 10] * rh);
ObjectResult result_item;
result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
} else {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
// Confidence score
float score = output_data_[1 + j * 6];
//xmin, ymin, xmax, ymax
int xmin = (output_data_[2 + j * 6] * rw);
int ymin = (output_data_[3 + j * 6] * rh);
int xmax = (output_data_[4 + j * 6] * rw);
int ymax = (output_data_[5 + j * 6] * rh);
//get width; get height
int wd = xmax - xmin; //width
int hd = ymax - ymin; //height
ObjectResult result_item;
result_item.rect = {xmin, ymin, xmax, ymax};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
}
}
start_idx += bbox_num[im_id];
}
}
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <numeric>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/tools/pp_shitu_tools/preprocess_op.h"
#include "paddle_inference_api.h" // NOLINT
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace baidu {
namespace paddle_serving {
namespace serving {
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
class ImageBlob {
public:
// image width and height
std::vector<float> im_shape_;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
// in net data shape(after pad)
std::vector<float> in_net_shape_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
};
class GeneralPicodetOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralPicodetOp);
int inference(); //op to do inference
private:
// rec preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> std_ = {0.229f, 0.224f, 0.225f};
float scale_ = 0.00392157;
int resize_size_ = 224;
int resize_short_ = 224;
Feature::ResizeImg resize_op_;
Feature::Normalize normalize_op_;
Feature::Permute permute_op_;
private:
// det pre-process
ImageBlob imgblob;
//resize
int interp_ = 2;
bool keep_ratio_ = false;
std::vector<int> target_size_ = {640,640};
std::vector<int> in_net_shape_;
void InitInfo_Run(cv::Mat *im, ImageBlob *data) {
data->im_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
data->scale_factor_ = {1., 1.};
data->in_net_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
}
void NormalizeImage_Run(cv::Mat *im, ImageBlob *data) {
double e = 1.0;
e /= 255.0;
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / std_[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / std_[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / std_[2];
}
}
VLOG(2) << "enter NormalizeImage_Run run";
VLOG(2) << data->im_shape_[0];
VLOG(2) << data->im_shape_[1];
VLOG(2) << data->scale_factor_[0];
VLOG(2) << data->scale_factor_[1];
}
void Resize_Run(cv::Mat *im, ImageBlob *data) {
auto resize_scale = GenerateScale(*im);
data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
cv::resize(*im, *im, cv::Size(), resize_scale.first, resize_scale.second,
interp_);
data->im_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
data->scale_factor_ = {
resize_scale.second, resize_scale.first,
};
VLOG(2) << "enter resize run";
VLOG(2) << data->im_shape_[0];
VLOG(2) << data->im_shape_[1];
VLOG(2) << data->scale_factor_[0];
VLOG(2) << data->scale_factor_[1];
}
std::pair<double, double> GenerateScale(const cv::Mat &im) {
std::pair<double, double> resize_scale;
int origin_w = im.cols;
int origin_h = im.rows;
if (keep_ratio_) {
int im_size_max = std::max(origin_w, origin_h);
int im_size_min = std::min(origin_w, origin_h);
int target_size_max =
*std::max_element(target_size_.begin(), target_size_.end());
int target_size_min =
*std::min_element(target_size_.begin(), target_size_.end());
double scale_min =
static_cast<double>(target_size_min) / static_cast<double>(im_size_min);
double scale_max =
static_cast<double>(target_size_max) / static_cast<double>(im_size_max);
double scale_ratio = std::min(scale_min, scale_max);
resize_scale = {scale_ratio, scale_ratio};
} else {
resize_scale.first =
static_cast<double>(target_size_[1]) / static_cast<double>(origin_w);
resize_scale.second =
static_cast<double>(target_size_[0]) / static_cast<double>(origin_h);
}
return resize_scale;
}
void Permute_Run(cv::Mat *im, ImageBlob *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
(data->im_data_).resize(rc * rh * rw);
float *base = (data->im_data_).data();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
}
}
//det process
int max_detect_results = 5;
void Postprocess(const std::vector <cv::Mat> mats,
std::vector <ObjectResult> *result,
std::vector<int> bbox_num,
bool is_rbox,
std::vector<float> output_data_,
std::vector<int> out_bbox_num_data_);
}; // GeneralPicodetOp
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <math.h>
#include <numeric>
#include "preprocess_op.h"
namespace Feature {
void Permute::Run(const cv::Mat *im, float *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &std, float scale) {
(*im).convertTo(*im, CV_32FC3, scale);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) / std[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) / std[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) / std[2];
}
}
}
void CenterCropImg::Run(cv::Mat &img, const int crop_size) {
int resize_w = img.cols;
int resize_h = img.rows;
int w_start = int((resize_w - crop_size) / 2);
int h_start = int((resize_h - crop_size) / 2);
cv::Rect rect(w_start, h_start, crop_size, crop_size);
img = img(rect);
}
void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
int resize_short_size, int size) {
int resize_h = 0;
int resize_w = 0;
if (size > 0) {
resize_h = size;
resize_w = size;
} else {
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
if (h < w) {
ratio = float(resize_short_size) / float(h);
} else {
ratio = float(resize_short_size) / float(w);
}
resize_h = round(float(h) * ratio);
resize_w = round(float(w) * ratio);
}
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
}
} // namespace Feature
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
using namespace std;
namespace Feature {
class Normalize {
public:
virtual void Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &std, float scale);
};
// RGB -> CHW
class Permute {
public:
virtual void Run(const cv::Mat *im, float *data);
};
class CenterCropImg {
public:
virtual void Run(cv::Mat &im, const int crop_size = 224);
};
class ResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
int size = 0);
};
} // namespace Feature
rm -rf log
rm -rf workdir*
export GLOG_v=3
nohup python3 -m paddle_serving_server.serve --model picodet_PPLCNet_x2_5_mainbody_lite_v2.0_serving general_PPLCNet_x2_5_lite_v2.0_serving --op GeneralPicodetOp GeneralFeatureExtractOp --port 9400 &
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
import faiss
import os
import pickle
rec_nms_thresold = 0.05
rec_score_thres = 0.5
feature_normalize = True
return_k = 1
index_dir = "./drink_dataset_v1.0/index"
def init_index(index_dir):
assert os.path.exists(os.path.join(
index_dir, "vector.index")), "vector.index not found ..."
assert os.path.exists(os.path.join(
index_dir, "id_map.pkl")), "id_map.pkl not found ... "
searcher = faiss.read_index(
os.path.join(index_dir, "vector.index"))
with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
id_map = pickle.load(fd)
return searcher, id_map
#get box
def nms_to_rec_results(results, thresh=0.1):
filtered_results = []
x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
scores = np.array([r["rec_scores"] for r in results])
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
while order.size > 0:
i = order[0]
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
filtered_results.append(results[i])
return filtered_results
def postprocess(fetch_dict,
feature_normalize,
det_boxes,
searcher,
id_map,
return_k,
rec_score_thres,
rec_nms_thresold):
batch_features = fetch_dict["features"]
#do feature norm
if feature_normalize:
feas_norm = np.sqrt(
np.sum(np.square(batch_features), axis=1, keepdims=True))
batch_features = np.divide(batch_features, feas_norm)
scores, docs = searcher.search(batch_features, return_k)
results = []
for i in range(scores.shape[0]):
pred = {}
if scores[i][0] >= rec_score_thres:
pred["bbox"] = [int(x) for x in det_boxes[i,2:]]
pred["rec_docs"] = id_map[docs[i][0]].split()[1]
pred["rec_scores"] = scores[i][0]
results.append(pred)
#do nms
results = nms_to_rec_results(results, rec_nms_thresold)
return results
#do client
if __name__=="__main__":
client = Client()
client.load_client_config(["picodet_PPLCNet_x2_5_mainbody_lite_v2.0_client", "general_PPLCNet_x2_5_lite_v2.0_client"])
client.connect(['127.0.0.1:9400'])
im = cv2.imread(sys.argv[1])
im_shape = np.array(im.shape[:2]).reshape(-1)
fetch_map = client.predict(
feed={
"image": im,
"im_shape": im_shape
},
fetch=["features", "boxes"],
batch=False)
#add retrieval procedure
det_boxes = fetch_map["boxes"]
searcher, id_map = init_index(index_dir)
results = postprocess(fetch_map, feature_normalize, det_boxes, searcher, id_map, return_k, rec_score_thres, rec_nms_thresold)
print(results)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册