Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
049defb0
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
049defb0
编写于
3月 06, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
差异文件
fix conflict
上级
50ffa579
f6e2cd02
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
205 addition
and
210 deletion
+205
-210
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+7
-6
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+14
-11
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+18
-13
python/examples/bert/bert_client.py
python/examples/bert/bert_client.py
+21
-10
python/examples/bert/bert_server.py
python/examples/bert/bert_server.py
+0
-2
python/examples/bert/get_data.sh
python/examples/bert/get_data.sh
+1
-0
python/examples/fit_a_line/benchmark.py
python/examples/fit_a_line/benchmark.py
+48
-0
python/examples/imdb/README.md
python/examples/imdb/README.md
+1
-1
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+35
-45
python/examples/imdb/get_data.sh
python/examples/imdb/get_data.sh
+2
-2
python/examples/imdb/imdb_reader.py
python/examples/imdb/imdb_reader.py
+8
-0
python/examples/imdb/imdb_web_service_demo.sh
python/examples/imdb/imdb_web_service_demo.sh
+1
-1
python/examples/imdb/local_train.py
python/examples/imdb/local_train.py
+5
-3
python/examples/imdb/test_client.py
python/examples/imdb/test_client.py
+22
-4
python/examples/imdb/test_client_multithread.py
python/examples/imdb/test_client_multithread.py
+0
-66
python/examples/imdb/test_server.py
python/examples/imdb/test_server.py
+0
-38
python/examples/imdb/text_classify_service.py
python/examples/imdb/text_classify_service.py
+1
-2
python/examples/util/timeline_trace.py
python/examples/util/timeline_trace.py
+5
-4
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+3
-1
python/paddle_serving_client/utils/__init__.py
python/paddle_serving_client/utils/__init__.py
+13
-1
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
049defb0
...
...
@@ -45,12 +45,12 @@ class PredictorRes {
~
PredictorRes
()
{}
public:
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
get_int64_by_name
(
const
std
::
string
&
name
)
{
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
get_int64_by_name
(
const
std
::
string
&
name
)
{
return
_int64_map
[
name
];
}
const
std
::
vector
<
std
::
vector
<
float
>>
&
get_float_by_name
(
const
std
::
string
&
name
)
{
const
std
::
vector
<
std
::
vector
<
float
>>&
get_float_by_name
(
const
std
::
string
&
name
)
{
return
_float_map
[
name
];
}
...
...
@@ -71,7 +71,7 @@ class PredictorClient {
void
set_predictor_conf
(
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
);
int
create_predictor_by_desc
(
const
std
::
string
&
sdk_desc
);
int
create_predictor_by_desc
(
const
std
::
string
&
sdk_desc
);
int
create_predictor
();
int
destroy_predictor
();
...
...
@@ -81,7 +81,8 @@ class PredictorClient {
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
);
// NOLINT
PredictorRes
&
predict_res
,
// NOLINT
const
int
&
pid
);
std
::
vector
<
std
::
vector
<
float
>>
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
...
...
core/general-client/src/general_model.cpp
浏览文件 @
049defb0
...
...
@@ -132,13 +132,13 @@ int PredictorClient::create_predictor() {
_api
.
thrd_initialize
();
}
int
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed
_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
)
{
// NOLINT
int
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch
_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
// NOLINT
predict_res
.
_int64_map
.
clear
();
predict_res
.
_float_map
.
clear
();
Timer
timeline
;
...
...
@@ -218,6 +218,7 @@ int PredictorClient::predict(
VLOG
(
2
)
<<
"fetch name: "
<<
name
;
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
predict_res
.
_int64_map
[
name
].
resize
(
1
);
predict_res
.
_int64_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
...
...
@@ -226,6 +227,7 @@ int PredictorClient::predict(
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
predict_res
.
_float_map
[
name
].
resize
(
1
);
predict_res
.
_float_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
...
...
@@ -240,11 +242,12 @@ int PredictorClient::predict(
if
(
FLAGS_profile_client
)
{
std
::
ostringstream
oss
;
oss
<<
"PROFILE
\t
"
<<
"pid:"
<<
pid
<<
"
\t
"
<<
"prepro_0:"
<<
preprocess_start
<<
" "
<<
"prepro_1:"
<<
preprocess_end
<<
" "
<<
"client_infer_0:"
<<
client_infer_start
<<
" "
<<
"client_infer_1:"
<<
client_infer_end
<<
" "
;
if
(
FLAGS_profile_server
)
{
int
op_num
=
res
.
profile_time_size
()
/
2
;
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
...
...
@@ -252,10 +255,10 @@ int PredictorClient::predict(
oss
<<
"op"
<<
i
<<
"_1:"
<<
res
.
profile_time
(
i
*
2
+
1
)
<<
" "
;
}
}
oss
<<
"postpro_0:"
<<
postprocess_start
<<
" "
;
oss
<<
"postpro_1:"
<<
postprocess_end
;
fprintf
(
stderr
,
"%s
\n
"
,
oss
.
str
().
c_str
());
}
return
0
;
...
...
@@ -342,7 +345,7 @@ std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
}
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] "
<<
"i
tn
feed value prepared"
;
<<
"i
nt
feed value prepared"
;
}
int64_t
preprocess_end
=
timeline
.
TimeStampUS
();
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
049defb0
...
...
@@ -31,13 +31,15 @@ PYBIND11_MODULE(serving_client, m) {
py
::
class_
<
PredictorRes
>
(
m
,
"PredictorRes"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
.
def
(
"get_int64_by_name"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_int64_by_name
(
name
);
},
py
::
return_value_policy
::
reference
)
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_float_by_name"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_float_by_name
(
name
);
},
py
::
return_value_policy
::
reference
);
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
PredictorClient
>
(
m
,
"PredictorClient"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
...
...
@@ -56,26 +58,29 @@ PYBIND11_MODULE(serving_client, m) {
self
.
set_predictor_conf
(
conf_path
,
conf_file
);
})
.
def
(
"create_predictor_by_desc"
,
[](
PredictorClient
&
self
,
const
std
::
string
&
sdk_desc
)
{
self
.
create_predictor_by_desc
(
sdk_desc
);
})
[](
PredictorClient
&
self
,
const
std
::
string
&
sdk_desc
)
{
self
.
create_predictor_by_desc
(
sdk_desc
);
})
.
def
(
"create_predictor"
,
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
.
def
(
"destroy_predictor"
,
[](
PredictorClient
&
self
)
{
self
.
destroy_predictor
();
})
.
def
(
"predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
)
{
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
return
self
.
predict
(
float_feed
,
float_feed_name
,
int_feed
,
int_feed_name
,
fetch_name
,
predict_res
);
predict_res
,
pid
);
})
.
def
(
"batch_predict"
,
[](
PredictorClient
&
self
,
...
...
python/examples/bert/bert_client.py
浏览文件 @
049defb0
...
...
@@ -36,6 +36,7 @@ class BertService():
self
.
show_ids
=
show_ids
self
.
do_lower_case
=
do_lower_case
self
.
retry
=
retry
self
.
pid
=
os
.
getpid
()
self
.
profile
=
True
if
(
"FLAGS_profile_client"
in
os
.
environ
and
os
.
environ
[
"FLAGS_profile_client"
])
else
False
...
...
@@ -78,7 +79,8 @@ class BertService():
}
prepro_end
=
time
.
time
()
if
self
.
profile
:
print
(
"PROFILE
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
print
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
self
.
pid
,
int
(
round
(
prepro_start
*
1000000
)),
int
(
round
(
prepro_end
*
1000000
))))
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
...
...
@@ -111,7 +113,8 @@ class BertService():
feed_batch
.
append
(
feed
)
prepro_end
=
time
.
time
()
if
self
.
profile
:
print
(
"PROFILE
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
print
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
self
.
pid
,
int
(
round
(
prepro_start
*
1000000
)),
int
(
round
(
prepro_end
*
1000000
))))
fetch_map_batch
=
self
.
client
.
batch_predict
(
...
...
@@ -120,7 +123,6 @@ class BertService():
def
test
():
bc
=
BertService
(
model_name
=
'bert_chinese_L-12_H-768_A-12'
,
max_seq_len
=
20
,
...
...
@@ -130,16 +132,25 @@ def test():
config_file
=
'./serving_client_conf/serving_client_conf.prototxt'
fetch
=
[
"pooled_output"
]
bc
.
load_client
(
config_file
,
server_addr
)
batch_size
=
4
batch_size
=
1
batch
=
[]
for
line
in
sys
.
stdin
:
if
len
(
batch
)
<
batch_size
:
batch
.
append
([
line
.
strip
()])
if
batch_size
==
1
:
result
=
bc
.
run_general
([[
line
.
strip
()]],
fetch
)
print
(
result
)
else
:
result
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
for
r
in
result
:
print
(
r
)
if
len
(
batch
)
<
batch_size
:
batch
.
append
([
line
.
strip
()])
else
:
result
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
for
r
in
result
:
print
(
r
)
if
len
(
batch
)
>
0
:
result
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
for
r
in
result
:
print
(
r
)
if
__name__
==
'__main__'
:
...
...
python/examples/bert/bert_server.py
浏览文件 @
049defb0
...
...
@@ -31,8 +31,6 @@ op_seq_maker.add_op(general_response_op)
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
set_local_bin
(
"~/github/Serving/build_server/core/general-server/serving"
)
server
.
load_model_config
(
sys
.
argv
[
1
])
port
=
int
(
sys
.
argv
[
2
])
...
...
python/examples/bert/get_data.sh
0 → 100644
浏览文件 @
049defb0
wget https://paddle-serving.bj.bcebos.com/bert_example/data-c.txt
--no-check-certificate
python/examples/
imdb/test_gpu_server
.py
→
python/examples/
fit_a_line/benchmark
.py
浏览文件 @
049defb0
...
...
@@ -11,25 +11,38 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
import
time
import
paddle
import
sys
from
paddle_serving_server_gpu
import
OpMaker
from
paddle_serving_server_gpu
import
OpSeqMaker
from
paddle_serving_server_gpu
import
Server
import
requests
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
args
=
benchmark_args
()
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
def
single_func
(
idx
,
resource
):
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
train
(),
buf_size
=
500
),
batch_size
=
1
)
start
=
time
.
time
()
for
data
in
train_reader
():
fetch_map
=
client
.
predict
(
feed
=
{
"x"
:
data
[
0
][
0
]},
fetch
=
[
"price"
])
end
=
time
.
time
()
return
[[
end
-
start
]]
elif
args
.
request
==
"http"
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
train
(),
buf_size
=
500
),
batch_size
=
1
)
start
=
time
.
time
()
for
data
in
train_reader
():
r
=
requests
.
post
(
'http://{}/uci/prediction'
.
format
(
args
.
endpoint
),
data
=
{
"x"
:
data
[
0
]})
end
=
time
.
time
()
return
[[
end
-
start
]]
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
12
)
server
.
load_model_config
(
sys
.
argv
[
1
])
port
=
int
(
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
port
,
device
=
"gpu"
)
server
.
run_server
()
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
print
(
result
)
python/examples/imdb/README.md
浏览文件 @
049defb0
...
...
@@ -19,7 +19,7 @@ cat test.data | python test_client_batch.py inference.conf 4 > result
设备 :Intel(R) Xeon(R) Gold 6271 CPU @ 2.60GHz
*
48
模型 :
IMDB-CNN
模型 :
[
CNN
](
https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/imdb/nets.py
)
server thread num : 16
...
...
python/examples/imdb/benchmark.py
浏览文件 @
049defb0
...
...
@@ -13,55 +13,45 @@
# limitations under the License.
import
sys
import
time
import
requests
from
imdb_reader
import
IMDBDataset
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
paddle_serving_client.utils
import
benchmark_args
args
=
benchmark_args
()
def
predict
(
thr_id
,
resource
):
client
=
Client
()
client
.
load_client_config
(
resource
[
"conf_file"
])
client
.
connect
(
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
prob
=
[]
label_list
=
[]
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
dataset
.
append
(
feed
)
line_id
+=
1
fin
.
close
()
def
single_func
(
idx
,
resource
):
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
args
.
vocab
)
filelist_fn
=
args
.
filelist
filelist
=
[]
start
=
time
.
time
()
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
for
inst
in
dataset
:
fetch_map
=
client
.
predict
(
feed
=
inst
,
fetch
=
fetch
)
prob
.
append
(
fetch_map
[
"prediction"
][
1
])
label_list
.
append
(
label
[
0
])
with
open
(
filelist_fn
)
as
fin
:
for
line
in
fin
:
filelist
.
append
(
line
.
strip
())
filelist
=
filelist
[
idx
::
args
.
thread
]
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
fetch_map
=
client
.
predict
(
feed
=
{
"words"
:
word_ids
},
fetch
=
[
"prediction"
])
elif
args
.
request
==
"http"
:
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
data
=
{
"words"
:
word_ids
})
end
=
time
.
time
()
client
.
release
()
return
[
prob
,
label_list
,
[
end
-
start
]]
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9293"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
sys
.
argv
[
3
])
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
)
return
[[
end
-
start
]]
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
print
(
result
)
python/examples/imdb/get_data.sh
浏览文件 @
049defb0
wget
--no-check-certificate
https://fleet.bj.bcebos.com/text_classification_data.tar.gz
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz
tar
-zxvf
text_classification_data.tar.gz
#wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imdb-demo%2Fimdb.tar.gz
#tar -xzf imdb-demo%2Fimdb.tar.gz
tar
-zxvf
imdb_model.tar.gz
python/examples/imdb/imdb_reader.py
浏览文件 @
049defb0
...
...
@@ -30,6 +30,14 @@ class IMDBDataset(dg.MultiSlotDataGenerator):
self
.
_pattern
=
re
.
compile
(
r
'(;|,|\.|\?|!|\s|\(|\))'
)
self
.
return_value
=
(
"words"
,
[
1
,
2
,
3
,
4
,
5
,
6
]),
(
"label"
,
[
0
])
def
get_words_only
(
self
,
line
):
sent
=
line
.
lower
().
replace
(
"<br />"
,
" "
).
strip
()
words
=
[
x
for
x
in
self
.
_pattern
.
split
(
sent
)
if
x
and
x
!=
" "
]
feas
=
[
self
.
_vocab
[
x
]
if
x
in
self
.
_vocab
else
self
.
_unk_id
for
x
in
words
]
return
feas
def
get_words_and_label
(
self
,
line
):
send
=
'|'
.
join
(
line
.
split
(
'|'
)[:
-
1
]).
lower
().
replace
(
"<br />"
,
" "
).
strip
()
...
...
python/examples/imdb/imdb_web_service_demo.sh
浏览文件 @
049defb0
wget https://paddle-serving.bj.bcebos.com/imdb-demo
%2F
imdb_service.tar.gz
wget https://paddle-serving.bj.bcebos.com/imdb-demo
/
imdb_service.tar.gz
tar
-xzf
imdb_service.tar.gz
wget
--no-check-certificate
https://fleet.bj.bcebos.com/text_classification_data.tar.gz
tar
-zxvf
text_classification_data.tar.gz
...
...
python/examples/imdb/local_train.py
浏览文件 @
049defb0
...
...
@@ -49,8 +49,9 @@ if __name__ == "__main__":
dataset
.
set_batch_size
(
128
)
dataset
.
set_filelist
(
filelist
)
dataset
.
set_thread
(
10
)
from
nets
import
bow_net
avg_cost
,
acc
,
prediction
=
bow_net
(
data
,
label
,
dict_dim
)
from
nets
import
lstm_net
model_name
=
"imdb_lstm"
avg_cost
,
acc
,
prediction
=
lstm_net
(
data
,
label
,
dict_dim
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -65,6 +66,7 @@ if __name__ == "__main__":
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
debug
=
False
)
logger
.
info
(
"TRAIN --> pass: {}"
.
format
(
i
))
if
i
==
5
:
serving_io
.
save_model
(
"imdb_model"
,
"imdb_client_conf"
,
serving_io
.
save_model
(
"{}_model"
.
format
(
model_name
),
"{}_client_conf"
.
format
(
model_name
),
{
"words"
:
data
},
{
"prediction"
:
prediction
},
fluid
.
default_main_program
())
python/examples/imdb/test_client.py
浏览文件 @
049defb0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
imdb_reader
import
IMDBDataset
import
sys
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9393"
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
sys
.
argv
[
2
])
for
line
in
sys
.
stdin
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])
+
1
]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
feed
=
{
"words"
:
word_ids
,
"label"
:
label
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
print
(
"{} {}"
.
format
(
fetch_map
[
"prediction"
][
1
],
label
[
0
]))
...
...
python/examples/imdb/test_client_multithread.py
已删除
100644 → 0
浏览文件 @
50ffa579
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
import
sys
import
subprocess
from
multiprocessing
import
Pool
import
time
def
predict
(
p_id
,
p_size
,
data_list
):
client
=
Client
()
client
.
load_client_config
(
conf_file
)
client
.
connect
([
"127.0.0.1:8010"
])
result
=
[]
for
line
in
data_list
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
#print("{} {}".format(fetch_map["prediction"][1], label[0]))
result
.
append
([
fetch_map
[
"prediction"
][
1
],
label
[
0
]])
return
result
def
predict_multi_thread
(
p_num
):
data_list
=
[]
with
open
(
data_file
)
as
f
:
for
line
in
f
.
readlines
():
data_list
.
append
(
line
)
start
=
time
.
time
()
p
=
Pool
(
p_num
)
p_size
=
len
(
data_list
)
/
p_num
result_list
=
[]
for
i
in
range
(
p_num
):
result_list
.
append
(
p
.
apply_async
(
predict
,
[
i
,
p_size
,
data_list
[
i
*
p_size
:(
i
+
1
)
*
p_size
]]))
p
.
close
()
p
.
join
()
for
i
in
range
(
p_num
):
result
=
result_list
[
i
].
get
()
for
j
in
result
:
print
(
"{} {}"
.
format
(
j
[
0
],
j
[
1
]))
cost
=
time
.
time
()
-
start
print
(
"{} threads cost {}"
.
format
(
p_num
,
cost
))
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
p_num
=
int
(
sys
.
argv
[
3
])
predict_multi_thread
(
p_num
)
python/examples/imdb/test_server.py
已删除
100644 → 0
浏览文件 @
50ffa579
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
from
paddle_serving_server
import
OpMaker
from
paddle_serving_server
import
OpSeqMaker
from
paddle_serving_server
import
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
load_model_config
(
sys
.
argv
[
1
])
port
=
int
(
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
port
,
device
=
"cpu"
)
server
.
run_server
()
python/examples/imdb/text_classify_service.py
浏览文件 @
049defb0
...
...
@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!flask/bin/python
from
paddle_serving_server.web_service
import
WebService
from
imdb_reader
import
IMDBDataset
import
sys
...
...
@@ -27,7 +26,7 @@ class IMDBService(WebService):
if
"words"
not
in
feed
:
exit
(
-
1
)
res_feed
=
{}
res_feed
[
"words"
]
=
self
.
dataset
.
get_words_
and_label
(
feed
[
"words"
])[
0
]
res_feed
[
"words"
]
=
self
.
dataset
.
get_words_
only
(
feed
[
"words"
])[
0
]
return
res_feed
,
fetch
imdb_service
=
IMDBService
(
name
=
"imdb"
)
...
...
python/examples/util/timeline_trace.py
浏览文件 @
049defb0
...
...
@@ -5,8 +5,9 @@ import sys
profile_file
=
sys
.
argv
[
1
]
def
prase
(
line
,
counter
):
event_list
=
line
.
split
(
" "
)
def
prase
(
pid_str
,
time_str
,
counter
):
pid
=
pid_str
.
split
(
":"
)[
1
]
event_list
=
time_str
.
split
(
" "
)
trace_list
=
[]
for
event
in
event_list
:
name
,
ts
=
event
.
split
(
":"
)
...
...
@@ -19,7 +20,7 @@ def prase(line, counter):
event_dict
=
{}
event_dict
[
"name"
]
=
name
event_dict
[
"tid"
]
=
0
event_dict
[
"pid"
]
=
0
event_dict
[
"pid"
]
=
pid
event_dict
[
"ts"
]
=
ts
event_dict
[
"ph"
]
=
ph
...
...
@@ -36,7 +37,7 @@ if __name__ == "__main__":
for
line
in
f
.
readlines
():
line
=
line
.
strip
().
split
(
"
\t
"
)
if
line
[
0
]
==
"PROFILE"
:
trace_list
=
prase
(
line
[
1
],
counter
)
trace_list
=
prase
(
line
[
1
],
line
[
2
],
counter
)
counter
+=
1
for
trace
in
trace_list
:
all_list
.
append
(
trace
)
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
049defb0
...
...
@@ -78,6 +78,7 @@ class Client(object):
self
.
feed_types_
=
{}
self
.
feed_names_to_idx_
=
{}
self
.
rpath
()
self
.
pid
=
os
.
getpid
()
def
rpath
(
self
):
lib_path
=
os
.
path
.
dirname
(
paddle_serving_client
.
__file__
)
...
...
@@ -160,6 +161,7 @@ class Client(object):
int_feed_names
=
[]
float_feed_names
=
[]
fetch_names
=
[]
for
key
in
feed
:
self
.
shape_check
(
feed
,
key
)
if
key
not
in
self
.
feed_names_
:
...
...
@@ -177,7 +179,7 @@ class Client(object):
ret
=
self
.
client_handle_
.
predict
(
float_slot
,
float_feed_names
,
int_slot
,
int_feed_names
,
fetch_names
,
self
.
result_handle_
)
self
.
result_handle_
,
self
.
pid
)
result_map
=
{}
for
i
,
name
in
enumerate
(
fetch_names
):
...
...
python/paddle_serving_client/utils/__init__.py
浏览文件 @
049defb0
...
...
@@ -11,16 +11,28 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
subprocess
import
argparse
from
multiprocessing
import
Pool
def
benchmark_args
():
parser
=
argparse
.
ArgumentParser
(
"benchmark"
)
parser
.
add_argument
(
"--thread"
,
type
=
int
,
default
=
10
,
help
=
"concurrecy"
)
parser
.
add_argument
(
"--model"
,
type
=
str
,
default
=
""
,
help
=
"model for evaluation"
)
parser
.
add_argument
(
"--endpoint"
,
type
=
str
,
default
=
"127.0.0.1:9292"
,
help
=
"endpoint of server"
)
parser
.
add_argument
(
"--request"
,
type
=
str
,
default
=
"rpc"
,
help
=
"mode of service"
)
return
parser
.
parse_args
()
class
MultiThreadRunner
(
object
):
def
__init__
(
self
):
pass
def
run
(
self
,
thread_func
,
thread_num
,
global_resource
):
os
.
environ
[
"http_proxy"
]
=
""
os
.
environ
[
"https_proxy"
]
=
""
p
=
Pool
(
thread_num
)
result_list
=
[]
for
i
in
range
(
thread_num
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录