Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
00ac0b47
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00ac0b47
编写于
10月 20, 2021
作者:
H
huangjianhui
提交者:
GitHub
10月 20, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1428 from felixhjh/v0.7.0
Merge pull request #1421 from felixhjh/develop
上级
15a3dea8
38c0dc4e
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
381 addition
and
161 deletion
+381
-161
python/examples/cascade_rcnn/README.md
python/examples/cascade_rcnn/README.md
+1
-1
python/examples/cascade_rcnn/README_CN.md
python/examples/cascade_rcnn/README_CN.md
+1
-1
python/examples/cascade_rcnn/test_client.py
python/examples/cascade_rcnn/test_client.py
+11
-8
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/README.md
.../examples/detection/faster_rcnn_hrnetv2p_w18_1x/README.md
+1
-1
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/README_CN.md
...amples/detection/faster_rcnn_hrnetv2p_w18_1x/README_CN.md
+1
-1
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/test_client.py
...ples/detection/faster_rcnn_hrnetv2p_w18_1x/test_client.py
+10
-7
python/examples/detection/faster_rcnn_r50_fpn_1x_coco/test_client.py
...ples/detection/faster_rcnn_r50_fpn_1x_coco/test_client.py
+12
-9
python/examples/detection/fcos_dcn_r50_fpn_1x_coco/test_client.py
...xamples/detection/fcos_dcn_r50_fpn_1x_coco/test_client.py
+11
-7
python/examples/detection/ppyolo_r50vd_dcn_1x_coco/test_client.py
...xamples/detection/ppyolo_r50vd_dcn_1x_coco/test_client.py
+10
-8
python/examples/detection/ssd_vgg16_300_240e_voc/label_list.txt
.../examples/detection/ssd_vgg16_300_240e_voc/label_list.txt
+14
-74
python/examples/detection/ssd_vgg16_300_240e_voc/test_client.py
.../examples/detection/ssd_vgg16_300_240e_voc/test_client.py
+11
-7
python/examples/detection/ttfnet_darknet53_1x_coco/README.md
python/examples/detection/ttfnet_darknet53_1x_coco/README.md
+1
-1
python/examples/detection/ttfnet_darknet53_1x_coco/README_CN.md
.../examples/detection/ttfnet_darknet53_1x_coco/README_CN.md
+1
-1
python/examples/detection/ttfnet_darknet53_1x_coco/test_client.py
...xamples/detection/ttfnet_darknet53_1x_coco/test_client.py
+14
-9
python/examples/detection/yolov3_darknet53_270e_coco/test_client.py
...mples/detection/yolov3_darknet53_270e_coco/test_client.py
+10
-8
python/paddle_serving_app/reader/__init__.py
python/paddle_serving_app/reader/__init__.py
+1
-0
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+271
-18
未找到文件。
python/examples/cascade_rcnn/README.md
浏览文件 @
00ac0b47
...
...
@@ -15,7 +15,7 @@ python3 -m paddle_serving_server.serve --model serving_server --port 9292 --gpu_
### Perform prediction
```
python3 test_client.py
python3 test_client.py
000000570688.jpg
```
Image with bounding boxes and json result would be saved in
`output`
folder.
python/examples/cascade_rcnn/README_CN.md
浏览文件 @
00ac0b47
...
...
@@ -15,7 +15,7 @@ python3 -m paddle_serving_server.serve --model serving_server --port 9292 --gpu_
### 执行预测
```
python3 test_client.py
python3 test_client.py
000000570688.jpg
```
客户端已经为图片做好了后处理,在
`output`
文件夹下存放各个框的json格式信息还有后处理结果图片。
python/examples/cascade_rcnn/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,27 +17,30 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionResize
((
800
,
1333
),
True
,
interpolation
=
2
),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionTranspose
((
2
,
0
,
1
)),
DetectionPadStride
(
32
)
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9292'
])
im
=
preprocess
(
'000000570688.jpg'
)
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
]
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
print
(
fetch_map
)
fetch_map
[
"image"
]
=
'000000570688.jpg'
fetch_map
[
"image"
]
=
sys
.
argv
[
1
]
postprocess
(
fetch_map
)
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/README.md
浏览文件 @
00ac0b47
...
...
@@ -9,7 +9,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/fast
### Start the service
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
.gz
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
...
...
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/README_CN.md
浏览文件 @
00ac0b47
...
...
@@ -10,7 +10,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/fast
### 启动服务
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
.gz
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启
`--use_trt`
选项,但此时需要额外设置子图的TRT变长最大最小最优shape.
...
...
python/examples/detection/faster_rcnn_hrnetv2p_w18_1x/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,24 +17,27 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionResize
((
800
,
1333
),
True
,
interpolation
=
2
),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionTranspose
((
2
,
0
,
1
)),
DetectionPadStride
(
32
)
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
...
...
python/examples/detection/faster_rcnn_r50_fpn_1x_coco/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -12,15 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
sys
import
numpy
as
np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
(
640
,
640
),
Transpose
((
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionResize
(
(
800
,
1333
),
True
,
interpolation
=
cv2
.
INTER_LINEAR
),
DetectionTranspose
((
2
,
0
,
1
)),
DetectionPadStride
(
128
)
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
...
...
@@ -29,15 +33,14 @@ client = Client()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
print
(
fetch_map
)
fetch_map
[
"image"
]
=
sys
.
argv
[
1
]
postprocess
(
fetch_map
)
python/examples/detection/fcos_dcn_r50_fpn_1x_coco/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,23 +17,27 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionResize
(
(
800
,
1333
),
True
,
interpolation
=
cv2
.
INTER_LINEAR
),
DetectionTranspose
((
2
,
0
,
1
)),
DetectionPadStride
(
128
)
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
...
...
python/examples/detection/ppyolo_r50vd_dcn_1x_coco/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,27 +17,29 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionResize
(
(
608
,
608
),
False
,
interpolation
=
2
),
DetectionTranspose
((
2
,
0
,
1
))
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
print
(
fetch_map
)
fetch_map
[
"image"
]
=
sys
.
argv
[
1
]
postprocess
(
fetch_map
)
python/examples/detection/ssd_vgg16_300_240e_voc/label_list.txt
浏览文件 @
00ac0b47
person
aeroplane
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
sofa
train
tvmonitor
python/examples/detection/ssd_vgg16_300_240e_voc/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,23 +17,27 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionResize
(
(
300
,
300
),
False
,
interpolation
=
cv2
.
INTER_LINEAR
),
DetectionNormalize
([
104.0
,
117.0
,
123.0
],
[
1.0
,
1.0
,
1.0
],
False
),
DetectionTranspose
((
2
,
0
,
1
)),
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
),
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
im_info
[
'scale_factor'
],
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
...
...
python/examples/detection/ttfnet_darknet53_1x_coco/README.md
浏览文件 @
00ac0b47
...
...
@@ -4,7 +4,7 @@
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/
2.0/
ttfnet_darknet53_1x_coco.tar
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/ttfnet_darknet53_1x_coco.tar
```
### Start the service
...
...
python/examples/detection/ttfnet_darknet53_1x_coco/README_CN.md
浏览文件 @
00ac0b47
...
...
@@ -4,7 +4,7 @@
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/
2.0/
ttfnet_darknet53_1x_coco.tar
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/ttfnet_darknet53_1x_coco.tar
```
...
...
python/examples/detection/ttfnet_darknet53_1x_coco/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -11,16 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
sys
import
numpy
as
np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Normalize
([
123.675
,
116.28
,
103.53
],
[
58.395
,
57.12
,
57.375
],
False
),
Resize
((
512
,
512
)),
Transpose
((
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionResize
(
(
512
,
512
),
False
,
interpolation
=
cv2
.
INTER_LINEAR
),
DetectionNormalize
([
123.675
,
116.28
,
103.53
],
[
58.395
,
57.12
,
57.375
],
False
),
DetectionTranspose
((
2
,
0
,
1
))
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
...
...
@@ -29,11 +31,14 @@ client = Client()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
),
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
im_info
[
'scale_factor'
],
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
...
...
python/examples/detection/yolov3_darknet53_270e_coco/test_client.py
浏览文件 @
00ac0b47
...
...
@@ -17,27 +17,29 @@ import numpy as np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Resize
(
(
608
,
608
),
interpolation
=
cv2
.
INTER_LINEAR
),
Div
(
255.0
),
Transpose
(
(
2
,
0
,
1
))
preprocess
=
DetectionSequential
([
DetectionFile2Image
(),
DetectionResize
(
(
608
,
608
),
False
,
interpolation
=
2
),
DetectionNormalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
),
DetectionTranspose
((
2
,
0
,
1
)),
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
,
[
608
,
608
]
)
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"serving_client/serving_client_conf.prototxt"
)
client
.
connect
([
'127.0.0.1:9494'
])
im
=
preprocess
(
sys
.
argv
[
1
])
im
,
im_info
=
preprocess
(
sys
.
argv
[
1
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
),
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)
,
"scale_factor"
:
im_info
[
'scale_factor'
]
,
},
fetch
=
[
"save_infer_model/scale_0.tmp_1"
],
batch
=
False
)
print
(
fetch_map
)
fetch_map
[
"image"
]
=
sys
.
argv
[
1
]
postprocess
(
fetch_map
)
python/paddle_serving_app/reader/__init__.py
浏览文件 @
00ac0b47
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
from
.chinese_bert_reader
import
ChineseBertReader
from
.image_reader
import
ImageReader
,
File2Image
,
URL2Image
,
Sequential
,
Normalize
,
Base64ToImage
from
.image_reader
import
DetectionFile2Image
,
DetectionSequential
,
DetectionNormalize
,
DetectionTranspose
,
DetectionResize
,
DetectionBGR2RGB
,
DetectionPadStride
from
.image_reader
import
CenterCrop
,
Resize
,
Transpose
,
Div
,
RGB2BGR
,
BGR2RGB
,
ResizeByFactor
from
.image_reader
import
RCNNPostprocess
,
SegPostprocess
,
PadStride
,
BlazeFacePostprocess
from
.image_reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
...
...
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
00ac0b47
...
...
@@ -498,6 +498,42 @@ class Sequential(object):
return
format_string_
class
DetectionSequential
(
object
):
"""
Args:
sequence (sequence of ``Transform`` objects): list of transforms to chain.
This API references some of the design pattern of torchvision
Users can simply use this API in training as well
Example:
>>> image_reader.Sequnece([
>>> transforms.CenterCrop(10),
>>> ])
"""
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
im
):
im_info
=
{
'scale_factor'
:
np
.
array
(
[
1.
,
1.
],
dtype
=
np
.
float32
),
'im_shape'
:
None
,
}
for
t
in
self
.
transforms
:
im
,
im_info
=
t
(
im
,
im_info
)
return
im
,
im_info
def
__repr__
(
self
):
format_string_
=
self
.
__class__
.
__name__
+
'('
for
t
in
self
.
transforms
:
format_string_
+=
'
\n
'
format_string_
+=
' {0}'
.
format
(
t
)
format_string_
+=
'
\n
)'
return
format_string_
class
RGB2BGR
(
object
):
def
__init__
(
self
):
pass
...
...
@@ -520,6 +556,17 @@ class BGR2RGB(object):
return
self
.
__class__
.
__name__
+
"()"
class
DetectionBGR2RGB
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
,
img_info
=
None
):
return
img
[:,
:,
::
-
1
],
img_info
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
String2Image
(
object
):
def
__init__
(
self
):
pass
...
...
@@ -556,6 +603,33 @@ class File2Image(object):
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
DetectionFile2Image
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img_path
,
im_info
=
None
):
if
py_version
==
2
:
fin
=
open
(
img_path
)
else
:
fin
=
open
(
img_path
,
"rb"
)
sample
=
fin
.
read
()
data
=
np
.
fromstring
(
sample
,
np
.
uint8
)
img
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
'''
img = cv2.imread(img_path, -1)
channels = img.shape[2]
ori_h = img.shape[0]
ori_w = img.shape[1]
'''
if
im_info
is
not
None
:
im_info
[
'im_shape'
]
=
np
.
array
(
img
.
shape
[:
2
],
dtype
=
np
.
float32
)
im_info
[
'scale_factor'
]
=
np
.
array
([
1.
,
1.
],
dtype
=
np
.
float32
)
return
img
,
im_info
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
URL2Image
(
object
):
def
__init__
(
self
):
...
...
@@ -607,6 +681,27 @@ class Div(object):
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"({})"
.
format
(
self
.
value
)
class
DetectionDiv
(
object
):
""" divide by some float number """
def
__init__
(
self
,
value
):
self
.
value
=
value
def
__call__
(
self
,
img
,
img_info
=
None
):
"""
Args:
img (numpy array): (int8 numpy array)
Returns:
img (numpy array): (float32 numpy array)
"""
img
=
img
.
astype
(
'float32'
)
/
self
.
value
return
img
,
img_info
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"({})"
.
format
(
self
.
value
)
class
Normalize
(
object
):
"""Normalize a tensor image with mean and standard deviation.
...
...
@@ -643,6 +738,51 @@ class Normalize(object):
self
.
std
)
class
DetectionNormalize
(
object
):
"""Normalize a tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``output[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutate the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
is_scale (bool): whether need im / 255
"""
def
__init__
(
self
,
mean
,
std
,
is_scale
=
True
):
self
.
mean
=
mean
self
.
std
=
std
self
.
is_scale
=
is_scale
def
__call__
(
self
,
im
,
im_info
=
None
):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
im
=
im
.
astype
(
np
.
float32
,
copy
=
False
)
mean
=
np
.
array
(
self
.
mean
)[
np
.
newaxis
,
np
.
newaxis
,
:]
std
=
np
.
array
(
self
.
std
)[
np
.
newaxis
,
np
.
newaxis
,
:]
if
self
.
is_scale
:
im
=
im
/
255.0
im
-=
mean
im
/=
std
return
im
,
im_info
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(mean={0}, std={1})'
.
format
(
self
.
mean
,
self
.
std
)
class
Lambda
(
object
):
"""Apply a user-defined lambda as a transform.
Very shame to just copy from
...
...
@@ -716,6 +856,124 @@ class Resize(object):
self
.
size
,
self
.
max_size
,
_cv2_interpolation_to_str
[
self
.
interpolation
])
class
DetectionResize
(
object
):
"""resize image by target_size and max_size
Args:
target_size (int): the target size of image
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): method of resize
"""
def
__init__
(
self
,
target_size
,
keep_ratio
=
True
,
interpolation
=
cv2
.
INTER_LINEAR
):
if
isinstance
(
target_size
,
int
):
target_size
=
[
target_size
,
target_size
]
self
.
target_size
=
target_size
self
.
keep_ratio
=
keep_ratio
self
.
interpolation
=
interpolation
def
__call__
(
self
,
im
,
im_info
=
None
):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
assert
len
(
self
.
target_size
)
==
2
assert
self
.
target_size
[
0
]
>
0
and
self
.
target_size
[
1
]
>
0
im_channel
=
im
.
shape
[
2
]
im_scale_y
,
im_scale_x
=
self
.
generate_scale
(
im
)
im
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
self
.
interpolation
)
if
im_info
is
not
None
:
im_info
[
'im_shape'
]
=
np
.
array
(
im
.
shape
[:
2
]).
astype
(
'float32'
)
im_info
[
'scale_factor'
]
=
np
.
array
(
[
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
)
return
im
,
im_info
def
generate_scale
(
self
,
im
):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape
=
im
.
shape
[:
2
]
im_c
=
im
.
shape
[
2
]
if
self
.
keep_ratio
:
im_size_min
=
np
.
min
(
origin_shape
)
im_size_max
=
np
.
max
(
origin_shape
)
target_size_min
=
np
.
min
(
self
.
target_size
)
target_size_max
=
np
.
max
(
self
.
target_size
)
im_scale
=
float
(
target_size_min
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
target_size_max
:
im_scale
=
float
(
target_size_max
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
self
.
target_size
im_scale_y
=
resize_h
/
float
(
origin_shape
[
0
])
im_scale_x
=
resize_w
/
float
(
origin_shape
[
1
])
return
im_scale_y
,
im_scale_x
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(size={0}, max_size={1}, interpolation={2})'
.
format
(
self
.
size
,
self
.
max_size
,
_cv2_interpolation_to_str
[
self
.
interpolation
])
class
PadStride
(
object
):
def
__init__
(
self
,
stride
):
self
.
coarsest_stride
=
stride
def
__call__
(
self
,
img
):
coarsest_stride
=
self
.
coarsest_stride
if
coarsest_stride
==
0
:
return
img
im_c
,
im_h
,
im_w
=
img
.
shape
pad_h
=
int
(
np
.
ceil
(
float
(
im_h
)
/
coarsest_stride
)
*
coarsest_stride
)
pad_w
=
int
(
np
.
ceil
(
float
(
im_w
)
/
coarsest_stride
)
*
coarsest_stride
)
padding_im
=
np
.
zeros
((
im_c
,
pad_h
,
pad_w
),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
img
im_info
=
{}
im_info
[
'resize_shape'
]
=
padding_im
.
shape
[
1
:]
return
padding_im
class
DetectionPadStride
(
object
):
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
Args:
stride (bool): model with FPN need image shape % stride == 0
"""
def
__init__
(
self
,
stride
=
0
):
self
.
coarsest_stride
=
stride
def
__call__
(
self
,
im
,
im_info
=
None
):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
coarsest_stride
=
self
.
coarsest_stride
if
coarsest_stride
<=
0
:
return
im
im_c
,
im_h
,
im_w
=
im
.
shape
pad_h
=
int
(
np
.
ceil
(
float
(
im_h
)
/
coarsest_stride
)
*
coarsest_stride
)
pad_w
=
int
(
np
.
ceil
(
float
(
im_w
)
/
coarsest_stride
)
*
coarsest_stride
)
padding_im
=
np
.
zeros
((
im_c
,
pad_h
,
pad_w
),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
im
return
padding_im
,
im_info
class
ResizeByFactor
(
object
):
"""Resize the input numpy array Image to a size multiple of factor which is usually required by a network
...
...
@@ -768,24 +1026,6 @@ class ResizeByFactor(object):
self
.
factor
,
self
.
max_side_len
)
class
PadStride
(
object
):
def
__init__
(
self
,
stride
):
self
.
coarsest_stride
=
stride
def
__call__
(
self
,
img
):
coarsest_stride
=
self
.
coarsest_stride
if
coarsest_stride
==
0
:
return
img
im_c
,
im_h
,
im_w
=
img
.
shape
pad_h
=
int
(
np
.
ceil
(
float
(
im_h
)
/
coarsest_stride
)
*
coarsest_stride
)
pad_w
=
int
(
np
.
ceil
(
float
(
im_w
)
/
coarsest_stride
)
*
coarsest_stride
)
padding_im
=
np
.
zeros
((
im_c
,
pad_h
,
pad_w
),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
img
im_info
=
{}
im_info
[
'resize_shape'
]
=
padding_im
.
shape
[
1
:]
return
padding_im
class
Transpose
(
object
):
def
__init__
(
self
,
transpose_target
):
self
.
transpose_target
=
transpose_target
...
...
@@ -799,6 +1039,19 @@ class Transpose(object):
"({})"
.
format
(
self
.
transpose_target
)
return
format_string
class
DetectionTranspose
(
object
):
def
__init__
(
self
,
transpose_target
):
self
.
transpose_target
=
transpose_target
def
__call__
(
self
,
im
,
im_info
=
None
):
im
=
F
.
transpose
(
im
,
self
.
transpose_target
)
return
im
,
im_info
def
__repr__
(
self
):
format_string
=
self
.
__class__
.
__name__
+
\
"({})"
.
format
(
self
.
transpose_target
)
return
format_string
class
SortedBoxes
(
object
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录