benchmark.py 2.2 KB
Newer Older
D
Dong Daxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14 15
# pylint: disable=doc-string-missing

16 17 18 19 20 21 22 23 24 25
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import time
import paddle
import sys
import requests

args = benchmark_args()

B
barrierye 已提交
26

27
def single_func(idx, resource):
H
HexToString 已提交
28 29 30 31 32 33
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.uci_housing.train(), buf_size=500),
        batch_size=1)
    total_number = sum(1 for _ in train_reader())

34 35 36 37 38 39
    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([args.endpoint])
        start = time.time()
        for data in train_reader():
H
HexToString 已提交
40 41 42 43
            #new_data = np.zeros((1, 13)).astype("float32")
            #new_data[0] = data[0][0]
            #fetch_map = client.predict(feed={"x": new_data}, fetch=["price"], batch=True)
            fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"])
44
        end = time.time()
H
HexToString 已提交
45
        return [[end - start], [total_number]]
46
    elif args.request == "http":
B
barrierye 已提交
47 48 49 50
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.uci_housing.train(), buf_size=500),
            batch_size=1)
51 52
        start = time.time()
        for data in train_reader():
B
barrierye 已提交
53 54 55
            r = requests.post(
                'http://{}/uci/prediction'.format(args.endpoint),
                data={"x": data[0]})
56
        end = time.time()
H
HexToString 已提交
57
        return [[end - start], [total_number]]
58

B
barrierye 已提交
59

60 61 62
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)