general_reader_op.cpp 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_reader_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
G
guru4elephant 已提交
23
#include "core/util/include/timer.h"
24 25 26 27 28

namespace baidu {
namespace paddle_serving {
namespace serving {

G
guru4elephant 已提交
29
using baidu::paddle_serving::Timer;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
  if (var_num != model_config->_feed_type.size()) {
    VLOG(2) << "var num: " << var_num;
    VLOG(2) << "model config var num: " << model_config->_feed_type.size();
    LOG(ERROR) << "feed var number not match.";
    return -1;
  }
45 46 47

  VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  for (int i = 0; i < var_num; ++i) {
    if (model_config->_feed_type[i] !=
        req->insts(0).tensor_array(i).elem_type()) {
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
    if (model_config->_feed_shape[i].size() ==
        req->insts(0).tensor_array(i).shape_size()) {
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
        req->insts(0).tensor_array(i).shape(j);
        if (model_config->_feed_shape[i][j] !=
            req->insts(0).tensor_array(i).shape(j)) {
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
  // reade request from client
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  int batch_size = req->insts_size();
  int input_var_num = 0;
  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
  std::vector<int64_t> capacity;

82 83
  GeneralBlob *res = mutable_data<GeneralBlob>();
  TensorVector *out = &res->tensor_vector;
84

M
MRXLT 已提交
85 86
  res->SetBatchSize(batch_size);

87 88 89 90
  if (!res) {
    LOG(ERROR) << "Failed get op tls reader object output";
  }

G
guru4elephant 已提交
91 92
  Timer timeline;
  int64_t start = timeline.TimeStampUS();
93 94 95
  int var_num = req->insts(0).tensor_array_size();
  VLOG(2) << "var num: " << var_num;

96
  VLOG(2) << "start to call load general model_conf op";
97 98 99
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();

100
  VLOG(2) << "get resource pointer done.";
101 102 103
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

104
  VLOG(2) << "print general model config done.";
105

106
  // TODO(guru4elephant): how to do conditional check?
107
  /*
108 109
  int ret = conf_check(req, model_config);
  if (ret != 0) {
110
    LOG(ERROR) << "model conf of server:";
111 112 113
    resource.print_general_model_config(model_config);
    return 0;
  }
114
  */
115 116 117 118 119
  // package tensor

  elem_type.resize(var_num);
  elem_size.resize(var_num);
  capacity.resize(var_num);
120 121

  // prepare basic information for input
122
  for (int i = 0; i < var_num; ++i) {
123
    paddle::PaddleTensor lod_tensor;
124 125 126 127 128
    elem_type[i] = req->insts(0).tensor_array(i).elem_type();
    VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
    if (elem_type[i] == 0) {  // int64
      elem_size[i] = sizeof(int64_t);
      lod_tensor.dtype = paddle::PaddleDType::INT64;
M
MRXLT 已提交
129
    } else if (elem_type[i] == 1) {
130 131
      elem_size[i] = sizeof(float);
      lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
M
MRXLT 已提交
132 133 134
    } else if (elem_type[i] == 2) {
      elem_size[i] = sizeof(int32_t);
      lod_tensor.dtype = paddle::PaddleDType::INT32;
135 136
    }

M
MRXLT 已提交
137
    if (model_config->_is_lod_feed[i]) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151
      lod_tensor.lod.resize(1);
      lod_tensor.lod[0].push_back(0);
      VLOG(2) << "var[" << i << "] is lod_tensor";
    } else {
      lod_tensor.shape.push_back(batch_size);
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "shape for var[" << i << "]: " << dim;
        capacity[i] *= dim;
        lod_tensor.shape.push_back(dim);
      }
      VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
    }
152
    lod_tensor.name = model_config->_feed_name[i];
153
    out->push_back(lod_tensor);
154 155
  }

156
  // specify the memory needed for output tensor_vector
157
  for (int i = 0; i < var_num; ++i) {
158
    if (out->at(i).lod.size() == 1) {
M
MRXLT 已提交
159
      int tensor_size = 0;
160 161
      for (int j = 0; j < batch_size; ++j) {
        const Tensor &tensor = req->insts(j).tensor_array(i);
162 163 164
        int data_len = 0;
        if (tensor.int64_data_size() > 0) {
          data_len = tensor.int64_data_size();
M
MRXLT 已提交
165
        } else if (tensor.float_data_size() > 0) {
166
          data_len = tensor.float_data_size();
M
MRXLT 已提交
167 168
        } else if (tensor.int_data_size() > 0) {
          data_len = tensor.int_data_size();
169 170
        }
        VLOG(2) << "tensor size for var[" << i << "]: " << data_len;
M
MRXLT 已提交
171
        tensor_size += data_len;
172

173
        int cur_len = out->at(i).lod[0].back();
174
        VLOG(2) << "current len: " << cur_len;
175

M
MRXLT 已提交
176
        int sample_len = 0;
M
fix bug  
MRXLT 已提交
177 178 179 180 181 182 183
        if (tensor.shape_size() == 1) {
          sample_len = data_len;
        } else {
          sample_len = tensor.shape(0);
        }
        out->at(i).lod[0].push_back(cur_len + sample_len);
        VLOG(2) << "new len: " << cur_len + sample_len;
M
MRXLT 已提交
184 185 186 187 188
      }
      out->at(i).data.Resize(tensor_size * elem_size[i]);
      out->at(i).shape = {out->at(i).lod[0].back()};
      for (int j = 1; j < req->insts(0).tensor_array(i).shape_size(); ++j) {
        out->at(i).shape.push_back(req->insts(0).tensor_array(i).shape(j));
189
      }
M
fix bug  
MRXLT 已提交
190 191 192
      if (out->at(i).shape.size() == 1) {
        out->at(i).shape.push_back(1);
      }
193
      VLOG(2) << "var[" << i
194
              << "] is lod_tensor and len=" << out->at(i).lod[0].back();
195
    } else {
196
      out->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
197 198 199 200 201
      VLOG(2) << "var[" << i
              << "] is tensor and capacity=" << batch_size * capacity[i];
    }
  }

202
  // fill the data into output general_blob
203 204
  for (int i = 0; i < var_num; ++i) {
    if (elem_type[i] == 0) {
205
      int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
M
MRXLT 已提交
206 207
      VLOG(2) << "first element data in var[" << i << "] is "
              << req->insts(0).tensor_array(i).int64_data(0);
208 209
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
210 211
        int elem_num = req->insts(j).tensor_array(i).int64_data_size();
        for (int k = 0; k < elem_num; ++k) {
B
barrierye 已提交
212
          dst_ptr[offset + k] = req->insts(j).tensor_array(i).int64_data(k);
213
        }
214 215
        if (out->at(i).lod.size() == 1) {
          offset = out->at(i).lod[0][j + 1];
216 217 218 219
        } else {
          offset += capacity[i];
        }
      }
M
MRXLT 已提交
220
    } else if (elem_type[i] == 1) {
221
      float *dst_ptr = static_cast<float *>(out->at(i).data.data());
M
MRXLT 已提交
222 223
      VLOG(2) << "first element data in var[" << i << "] is "
              << req->insts(0).tensor_array(i).float_data(0);
224 225
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
226 227
        int elem_num = req->insts(j).tensor_array(i).float_data_size();
        for (int k = 0; k < elem_num; ++k) {
B
barrierye 已提交
228
          dst_ptr[offset + k] = req->insts(j).tensor_array(i).float_data(k);
229
        }
230 231
        if (out->at(i).lod.size() == 1) {
          offset = out->at(i).lod[0][j + 1];
232 233 234 235
        } else {
          offset += capacity[i];
        }
      }
M
MRXLT 已提交
236 237
    } else if (elem_type[i] == 2) {
      int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data());
M
MRXLT 已提交
238 239
      VLOG(2) << "first element data in var[" << i << "] is "
              << req->insts(0).tensor_array(i).int_data(0);
M
MRXLT 已提交
240 241 242 243 244 245 246 247 248 249 250 251
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
        int elem_num = req->insts(j).tensor_array(i).int_data_size();
        for (int k = 0; k < elem_num; ++k) {
          dst_ptr[offset + k] = req->insts(j).tensor_array(i).int_data(k);
        }
        if (out->at(i).lod.size() == 1) {
          offset = out->at(i).lod[0][j + 1];
        } else {
          offset += capacity[i];
        }
      }
252 253 254
    }
  }

255 256
  VLOG(2) << "output size: " << out->size();

G
guru4elephant 已提交
257 258 259 260 261 262
  timeline.Pause();
  int64_t end = timeline.TimeStampUS();
  res->p_size = 0;
  AddBlobInfo(res, start);
  AddBlobInfo(res, end);

263 264 265 266 267 268 269
  VLOG(2) << "read data from client success";
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu