benchmark.py 3.3 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
import sys
import os
import base64
import yaml
import requests
import time
import json
try:
    from paddle_serving_server_gpu.pipeline import PipelineClient
except ImportError:
    from paddle_serving_server.pipeline import PipelineClient
import numpy as np
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
def parse_benchmark(filein, fileout):
    with open(filein, "r") as fin:
        res = yaml.load(fin)
        del_list = []
        for key in res["DAG"].keys():
            if "call" in key:
                del_list.append(key)
        for key in del_list:
            del res["DAG"][key]
    with open(fileout, "w") as fout:
        yaml.dump(res, fout, default_flow_style=False)

def gen_yml(device):
    fin = open("config.yml", "r")
    config = yaml.load(fin)
    fin.close()
    config["dag"]["tracer"] = {"interval_s": 10}
    if device == "gpu":
        config["op"]["det"]["local_service_conf"]["device_type"] = 1
        config["op"]["det"]["local_service_conf"]["devices"] = "2"
        config["op"]["rec"]["local_service_conf"]["device_type"] = 1
        config["op"]["rec"]["local_service_conf"]["devices"] = "2"        
    with open("config2.yml", "w") as fout: 
        yaml.dump(config, fout, default_flow_style=False)

def cv2_to_base64(image):
    return base64.b64encode(image).decode('utf8')

def run_http(idx, batch_size):
    print("start thread ({})".format(idx))
    url = "http://127.0.0.1:9999/ocr/prediction"    
    start = time.time()

    test_img_dir = "imgs/"
    for img_file in os.listdir(test_img_dir):
        with open(os.path.join(test_img_dir, img_file), 'rb') as file:
            image_data1 = file.read()
        image = cv2_to_base64(image_data1)
        data = {"key": ["image"], "value": [image]}
        for i in range(100):
            r = requests.post(url=url, data=json.dumps(data))
        end = time.time()
    return [[end - start]]

def multithread_http(thread, batch_size):
    multi_thread_runner = MultiThreadRunner()
    result = multi_thread_runner.run(run_http , thread, batch_size)

def run_rpc(thread, batch_size):
    client = PipelineClient()
    client.connect(['127.0.0.1:18090'])
    start = time.time()
    test_img_dir = "imgs/"
    for img_file in os.listdir(test_img_dir):
        with open(os.path.join(test_img_dir, img_file), 'rb') as file:
            image_data = file.read()
        image = cv2_to_base64(image_data)

        for i in range(100):
            ret = client.predict(feed_dict={"image": image}, fetch=["res"])
    end = time.time()
    return [[end - start]]


def multithread_rpc(thraed, batch_size):
    multi_thread_runner = MultiThreadRunner()
    result = multi_thread_runner.run(run_rpc , thread, batch_size)

if __name__ == "__main__":
    if sys.argv[1] == "yaml":
        mode = sys.argv[2] # brpc/  local predictor
        thread = int(sys.argv[3])
        device = sys.argv[4]
        gen_yml(device)
    elif sys.argv[1] == "run":
        mode = sys.argv[2] # http/ rpc
        thread = int(sys.argv[3])
        batch_size = int(sys.argv[4])
        if mode == "http":
            multithread_http(thread, batch_size)
        elif mode == "rpc":
            multithread_rpc(thread, batch_size)
    elif sys.argv[1] == "dump":
        filein = sys.argv[2]
        fileout = sys.argv[3]
        parse_benchmark(filein, fileout)