rpc_service.py 9.4 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhangjun 已提交
15 16
import sys
import os
H
HexToString 已提交
17
import numpy as np
Z
zhangjun 已提交
18 19 20 21 22 23 24 25
import google.protobuf.text_format

from .proto import general_model_config_pb2 as m_config
from .proto import multi_lang_general_model_service_pb2
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
from .proto import multi_lang_general_model_service_pb2_grpc

H
HexToString 已提交
26

Z
zhangjun 已提交
27 28
class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
                                     MultiLangGeneralModelServiceServicer):
29
    def __init__(self, model_config_path_list, is_multi_model, endpoints):
Z
zhangjun 已提交
30
        self.is_multi_model_ = is_multi_model
31
        self.model_config_path_list = model_config_path_list
Z
zhangjun 已提交
32
        self.endpoints_ = endpoints
33 34
        self._init_bclient(self.model_config_path_list, self.endpoints_)
        self._parse_model_config(self.model_config_path_list)
Z
zhangjun 已提交
35

36
    def _init_bclient(self, model_config_path_list, endpoints, timeout_ms=None):
37 38 39 40 41 42 43
        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
                file_path_list.append("{}/serving_server_conf.prototxt".format(
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
44 45 46 47
        from paddle_serving_client import Client
        self.bclient_ = Client()
        if timeout_ms is not None:
            self.bclient_.set_rpc_timeout_ms(timeout_ms)
48
        self.bclient_.load_client_config(file_path_list)
Z
zhangjun 已提交
49 50
        self.bclient_.connect(endpoints)

51 52 53 54 55
    def _parse_model_config(self, model_config_path_list):
        if isinstance(model_config_path_list, str):
            model_config_path_list = [model_config_path_list]
        elif isinstance(model_config_path_list, list):
            pass
H
HexToString 已提交
56

57 58 59 60 61 62 63
        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
                file_path_list.append("{}/serving_server_conf.prototxt".format(
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
64
        model_conf = m_config.GeneralModelConfig()
65 66 67
        f = open(file_path_list[0], 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
Z
zhangjun 已提交
68 69 70 71 72 73 74 75 76
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
77 78 79 80 81
        if len(file_path_list) > 1:
            model_conf = m_config.GeneralModelConfig()
            f = open(file_path_list[-1], 'r')
            model_conf = google.protobuf.text_format.Merge(
                str(f.read()), model_conf)
H
HexToString 已提交
82

83 84
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
Z
zhangjun 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

    def _unpack_inference_request(self, request):
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
        is_python = request.is_python
        log_id = request.log_id
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
                var = feed_inst.tensor_array[idx]
                v_type = self.feed_types_[name]
                data = None
                if is_python:
H
HexToString 已提交
111
                    if v_type == 0:  # int64
Z
zhangjun 已提交
112
                        data = np.frombuffer(var.data, dtype="int64")
H
HexToString 已提交
113
                    elif v_type == 1:  # float32
Z
zhangjun 已提交
114
                        data = np.frombuffer(var.data, dtype="float32")
H
HexToString 已提交
115
                    elif v_type == 2:  # int32
Z
zhangjun 已提交
116 117 118 119 120 121 122 123
                        data = np.frombuffer(var.data, dtype="int32")
                    else:
                        raise Exception("error type.")
                else:
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
H
HexToString 已提交
124
                    elif v_type == 2:  # int32
Z
zhangjun 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                        data = np.array(list(var.int_data), dtype="int32")
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
                feed_dict[name] = data
                if len(var.lod) > 0:
                    feed_dict["{}.lod".format(name)] = var.lod
            feed_batch.append(feed_dict)
        return feed_batch, fetch_names, is_python, log_id

    def _pack_inference_response(self, ret, fetch_names, is_python):
        resp = multi_lang_general_model_service_pb2.InferenceResponse()
        if ret is None:
            resp.err_code = 1
            return resp
        results, tag = ret
        resp.tag = tag
        resp.err_code = 0

        if not self.is_multi_model_:
            results = {'general_infer_0': results}
        for model_name, model_result in results.items():
            model_output = multi_lang_general_model_service_pb2.ModelOutput()
            inst = multi_lang_general_model_service_pb2.FetchInst()
            for idx, name in enumerate(fetch_names):
                tensor = multi_lang_general_model_service_pb2.Tensor()
                v_type = self.fetch_types_[name]
                if is_python:
                    tensor.data = model_result[name].tobytes()
                else:
                    if v_type == 0:  # int64
                        tensor.int64_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
                    elif v_type == 1:  # float32
                        tensor.float_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
                    elif v_type == 2:  # int32
                        tensor.int_data.extend(model_result[name].reshape(-1)
                                               .tolist())
                    else:
                        raise Exception("error type.")
                tensor.shape.extend(list(model_result[name].shape))
                if "{}.lod".format(name) in model_result:
                    tensor.lod.extend(model_result["{}.lod".format(name)]
                                      .tolist())
                inst.tensor_array.append(tensor)
            model_output.insts.append(inst)
            model_output.engine_name = model_name
            resp.outputs.append(model_output)
        return resp

    def SetTimeout(self, request, context):
        # This porcess and Inference process cannot be operate at the same time.
        # For performance reasons, do not add thread lock temporarily.
        timeout_ms = request.timeout_ms
H
HexToString 已提交
180 181
        self._init_bclient(self.model_config_path_list, self.endpoints_,
                           timeout_ms)
Z
zhangjun 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        resp = multi_lang_general_model_service_pb2.SimpleResponse()
        resp.err_code = 0
        return resp

    def Inference(self, request, context):
        feed_batch, fetch_names, is_python, log_id \
                = self._unpack_inference_request(request)
        ret = self.bclient_.predict(
            feed=feed_batch,
            fetch=fetch_names,
            batch=True,
            need_variant_tag=True,
            log_id=log_id)
        return self._pack_inference_response(ret, fetch_names, is_python)

    def GetClientConfig(self, request, context):
198 199
        #model_config_path_list is list right now.
        #dict should be added when graphMaker is used.
Z
zhangjun 已提交
200
        resp = multi_lang_general_model_service_pb2.GetClientConfigResponse()
H
HexToString 已提交
201 202 203 204 205 206 207 208 209 210
        model_config_str = []
        for single_model_config in self.model_config_path_list:
            if os.path.isdir(single_model_config):
                with open("{}/serving_server_conf.prototxt".format(
                        single_model_config)) as f:
                    model_config_str.append(str(f.read()))
            elif os.path.isfile(single_model_config):
                with open(single_model_config) as f:
                    model_config_str.append(str(f.read()))
        resp.client_config_str = model_config_str[0]
H
HexToString 已提交
211
        return resp