web_service.py 6.9 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14

M
MRXLT 已提交
15 16
from flask import Flask, request, abort
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
17
import paddle_serving_server_gpu as serving
M
MRXLT 已提交
18
from multiprocessing import Pool, Process, Queue
M
MRXLT 已提交
19
from paddle_serving_client import Client
M
MRXLT 已提交
20 21 22 23
from paddle_serving_server_gpu.serve import start_multi_card

import sys
import numpy as np
M
MRXLT 已提交
24 25 26 27 28


class WebService(object):
    def __init__(self, name="default_service"):
        self.name = name
29 30
        self.gpus = []
        self.rpc_service_list = []
31

M
MRXLT 已提交
32 33 34
    def load_model_config(self, model_config):
        self.model_config = model_config

35
    def set_gpus(self, gpus):
G
guru4elephant 已提交
36
        self.gpus = [int(x) for x in gpus.split(",")]
37

B
barrierye 已提交
38 39 40 41 42
    def default_rpc_service(self,
                            workdir="conf",
                            port=9292,
                            gpuid=0,
                            thread_num=10):
43 44
        device = "gpu"
        if gpuid == -1:
G
guru4elephant 已提交
45
            device = "cpu"
46
        op_maker = serving.OpMaker()
M
MRXLT 已提交
47 48 49
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')
B
barrierye 已提交
50

51
        op_seq_maker = serving.OpSeqMaker()
M
MRXLT 已提交
52 53 54
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)
B
barrierye 已提交
55

56
        server = serving.Server()
M
MRXLT 已提交
57
        server.set_op_sequence(op_seq_maker.get_op_sequence())
58
        server.set_num_threads(thread_num)
B
barrierye 已提交
59

60
        server.load_model_config(self.model_config)
G
guru4elephant 已提交
61 62
        if gpuid >= 0:
            server.set_gpuid(gpuid)
63 64 65 66 67
        server.prepare_server(workdir=workdir, port=port, device=device)
        return server

    def _launch_rpc_service(self, service_idx):
        self.rpc_service_list[service_idx].run_server()
M
MRXLT 已提交
68 69 70 71 72 73

    def prepare_server(self, workdir="", port=9393, device="gpu", gpuid=0):
        self.workdir = workdir
        self.port = port
        self.device = device
        self.gpuid = gpuid
74 75 76
        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
B
barrierye 已提交
77 78
                self.default_rpc_service(
                    self.workdir, self.port + 1, -1, thread_num=10))
79 80 81
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
B
barrierye 已提交
82 83 84 85 86
                    self.default_rpc_service(
                        "{}_{}".format(self.workdir, i),
                        self.port + 1 + i,
                        gpuid,
                        thread_num=10))
M
MRXLT 已提交
87

M
MRXLT 已提交
88 89 90 91
    def _launch_web_service(self):
        gpu_num = len(self.gpus)
        self.client = Client()
        self.client.load_client_config("{}/serving_server_conf.prototxt".format(
92
            self.model_config))
D
dongdaxiang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        client.connect([endpoint])
        while True:
            request_json = inputqueue.get()
            try:
                feed, fetch = self.preprocess(request_json,
                                              request_json["fetch"])
                if isinstance(feed, list):
                    fetch_map_batch = client.predict(
                        feed_batch=feed, fetch=fetch)
                    fetch_map_batch = self.postprocess(
                        feed=request_json,
                        fetch=fetch,
                        fetch_map=fetch_map_batch)
                    for key in fetch_map_batch:
                        fetch_map_batch[key] = fetch_map_batch[key].tolist()
                    result = {"result": fetch_map_batch}
                elif isinstance(feed, dict):
                    if "fetch" in feed:
                        del feed["fetch"]
                    fetch_map = client.predict(feed=feed, fetch=fetch)
                    for key in fetch_map:
                        fetch_map[key] = fetch_map[key][0].tolist()
                    result = self.postprocess(
                        feed=request_json, fetch=fetch, fetch_map=fetch_map)
                self.output_queue.put(result)
            except ValueError:
                self.output_queue.put(-1)

    def _launch_web_service(self, gpu_num):
        app_instance = Flask(__name__)
        service_name = "/" + self.name + "/prediction"

        self.input_queues = []
        self.output_queue = Queue()
        for i in range(gpu_num):
            self.input_queues.append(Queue())

        producer_list = []
        for i, input_q in enumerate(self.input_queues):
            producer_processes = Process(
                target=self.producers,
                args=(
                    input_q,
                    "0.0.0.0:{}".format(self.port + 1 + i), ))
            producer_list.append(producer_processes)

        for p in producer_list:
            p.start()

        client = Client()
        client.load_client_config("{}/serving_server_conf.prototxt".format(
            self.model_config))
        client.connect(["0.0.0.0:{}".format(self.port + 1)])

        self.idx = 0

        @app_instance.route(service_name, methods=['POST'])
        def get_prediction():
            if not request.json:
                abort(400)
            if "fetch" not in request.json:
                abort(400)

            self.input_queues[self.idx].put(request.json)

            self.idx += 1
            if self.idx >= len(self.gpus):
                self.idx = 0
            result = self.output_queue.get()
            if not isinstance(result, dict) and result == -1:
                result = {"result": "Request Value Error"}
            return result

        app_instance.run(host="0.0.0.0",
                         port=self.port,
                         threaded=False,
                         processes=1)

        for p in producer_list:
            p.join()
174

175
    def run_server(self):
M
MRXLT 已提交
176 177 178 179 180
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
181 182
        server_pros = []
        for i, service in enumerate(self.rpc_service_list):
G
guru4elephant 已提交
183
            p = Process(target=self._launch_rpc_service, args=(i, ))
184 185
            server_pros.append(p)
        for p in server_pros:
186 187
            p.start()

M
MRXLT 已提交
188 189 190
    def preprocess(self, feed={}, fetch=[]):
        return feed, fetch

M
MRXLT 已提交
191
    def postprocess(self, feed={}, fetch=[], fetch_map=None):
M
MRXLT 已提交
192
        return fetch_map