RUN_IN_DOCKER.md 5.9 KB
Newer Older
1 2
# How to run PaddleServing in Docker

B
barrierye 已提交
3
([简体中文](RUN_IN_DOCKER_CN.md)|English)
B
fix doc  
barrierye 已提交
4

5 6 7 8
## Requirements

Docker (GPU version requires nvidia-docker to be installed on the GPU machine)

B
barrierye 已提交
9 10
This document takes Python2 as an example to show how to run Paddle Serving in docker. You can also use Python3 to run related commands by replacing `python` with `python3`.

11 12 13 14
## CPU

### Get docker image

B
barrierye 已提交
15
Refer to [this document](DOCKER_IMAGES.md) for a docker image:
16

B
barrierye 已提交
17 18 19
```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest
```
20

B
barrierye 已提交
21

22 23 24
### Create container

```bash
B
barrierye 已提交
25
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest
26 27 28 29 30 31 32
docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

33
In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:
34 35 36 37 38

```bash
pip install paddle-serving-server
```

39 40 41 42 43 44
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source of the following example) to speed up the download:

```shell
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
```

45 46 47 48 49 50 51 52 53 54 55 56 57 58
### Test example

Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
59
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci >std.log 2>err.log &
60 61 62 63 64
  ```

  Running on the Client side (inside or outside the container):

  ```bash
B
barrierye 已提交
65
  curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
66 67 68 69 70 71 72
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
73
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 >std.log 2>err.log &
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

  

## GPU

The GPU version is basically the same as the CPU version, with only some differences in interface naming (GPU version requires nvidia-docker to be installed on the GPU machine).

### Get docker image

B
barrierye 已提交
98
Refer to [this document](DOCKER_IMAGES.md) for a docker image, the following is an example of an `cuda9.0-cudnn7` image:
99

B
barrierye 已提交
100 101 102
```shell
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
```
103 104 105 106

### Create container

```bash
B
barrierye 已提交
107
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
108 109 110 111 112 113 114 115 116 117 118 119 120
nvidia-docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:

```bash
pip install paddle-serving-server-gpu
```

121 122 123
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source of the following example) to speed up the download:

```shell
B
barrierye 已提交
124
pip install paddle-serving-server-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple
125 126
```

127 128
### Test example

B
barrierye 已提交
129 130 131 132 133
When running the GPU Server, you need to set the GPUs used by the prediction service through the `--gpu_ids` option, and the CPU is used by default. An error will be reported when the value of `--gpu_ids` exceeds the environment variable `CUDA_VISIBLE_DEVICES`. The following example specifies to use a GPU with index 0:
```shell
export CUDA_VISIBLE_DEVICES=0,1
python -m paddle_serving_server_gpu.serve --model uci_housing_model --port 9292 --gpu_ids 0
```
B
barrierye 已提交
134 135


136 137 138 139 140 141 142 143 144 145 146 147
Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
148
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci --gpu_ids 0
149 150 151 152 153
  ```

  Running on the Client side (inside or outside the container):

  ```bash
B
barrierye 已提交
154
  curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
155 156 157 158 159 160 161
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
162
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

B
barrierye 已提交
179 180 181 182 183



## Attention

B
barrierye 已提交
184
Runtime images cannot be used for compilation. If you want to compile from source, refer to [COMPILE](COMPILE.md).