COMPILE.md 6.5 KB
Newer Older
J
Jiawei Wang 已提交
1
# How to compile PaddleServing
D
Dong Daxiang 已提交
2

J
Jiawei Wang 已提交
3 4 5
([简体中文](./COMPILE_CN.md)|English)

## Compilation environment requirements
B
barrierye 已提交
6

B
barrierye 已提交
7 8 9 10 11
- OS: CentOS 7
- GCC: 4.8.2 and later
- Golang: 1.9.2 and later
- Git:2.17.1 and later
- CMake:3.2.2 and later
M
MRXLT 已提交
12
- Python:2.7.2 and later / 3.6 and later
D
Dong Daxiang 已提交
13

B
barrierye 已提交
14
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md).
B
barrierye 已提交
15

B
barrierye 已提交
16 17 18 19
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:

- Set `DPYTHON_INCLUDE_DIR` to `$PYTHONROOT/include/python3.6m/`
- Set  `DPYTHON_LIBRARIES` to `$PYTHONROOT/lib64/libpython3.6.so`
M
fix doc  
MRXLT 已提交
20
- Set `DPYTHON_EXECUTABLE` to `$PYTHONROOT/bin/python3.6`
B
barrierye 已提交
21

J
Jiawei Wang 已提交
22
## Get Code
D
Dong Daxiang 已提交
23 24 25

``` python
git clone https://github.com/PaddlePaddle/Serving
26
cd Serving && git submodule update --init --recursive
D
Dong Daxiang 已提交
27 28
```

B
barrierye 已提交
29 30


B
barrierye 已提交
31

J
Jiawei Wang 已提交
32
## PYTHONROOT Setting
D
Dong Daxiang 已提交
33

B
barrierye 已提交
34
```shell
J
Jiawei Wang 已提交
35
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT
D
Dong Daxiang 已提交
36 37 38
export PYTHONROOT=/usr/
```

B
barrierye 已提交
39 40
In the default centos7 image we provide, the Python path is `/usr/bin/python`. If you want to use our centos6 image, you need to set it to `export PYTHONROOT=/usr/local/python2.7/`.

B
barrierye 已提交
41 42 43 44 45 46 47 48 49 50 51 52


## Install Python dependencies

```shell
pip install -r python/requirements.txt
```

If Python3 is used, replace `pip` with `pip3`.



J
Jiawei Wang 已提交
53
## Compile Server
B
barrierye 已提交
54

J
Jiawei Wang 已提交
55
### Integrated CPU version paddle inference library
B
barrierye 已提交
56

D
Dong Daxiang 已提交
57
``` shell
B
barrierye 已提交
58
mkdir server-build-cpu && cd server-build-cpu
B
barrierye 已提交
59
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
D
Dong Daxiang 已提交
60 61 62
make -j10
```

J
Jiawei Wang 已提交
63
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
B
barrierye 已提交
64

J
Jiawei Wang 已提交
65
### Integrated GPU version paddle inference library
B
barrierye 已提交
66

D
Dong Daxiang 已提交
67
``` shell
B
barrierye 已提交
68
mkdir server-build-gpu && cd server-build-gpu
B
barrierye 已提交
69
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON ..
D
Dong Daxiang 已提交
70 71 72
make -j10
```

J
Jiawei Wang 已提交
73
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
74

B
barrierye 已提交
75
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
M
MRXLT 已提交
76

B
barrierye 已提交
77 78


J
Jiawei Wang 已提交
79
## Compile Client
D
Dong Daxiang 已提交
80 81

``` shell
B
barrierye 已提交
82
mkdir client-build && cd client-build
B
barrierye 已提交
83
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON ..
D
Dong Daxiang 已提交
84 85
make -j10
```
D
Dong Daxiang 已提交
86

J
Jiawei Wang 已提交
87
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
88

B
barrierye 已提交
89 90


J
Jiawei Wang 已提交
91
## Compile the App
B
barrierye 已提交
92 93

```bash
B
barrierye 已提交
94
mkdir app-build && cd app-build
95
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DAPP=ON ..
B
barrierye 已提交
96 97 98
make
```

B
barrierye 已提交
99 100


J
Jiawei Wang 已提交
101 102 103
## Install wheel package

Regardless of the client, server or App part, after compiling, install the whl package under `python/dist/`.
B
barrierye 已提交
104

B
barrierye 已提交
105 106


J
Jiawei Wang 已提交
107
## Note
B
barrierye 已提交
108

J
Jiawei Wang 已提交
109
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
B
barrierye 已提交
110

111

B
barrierye 已提交
112

J
Jiawei Wang 已提交
113
## CMake Option Description
B
barrierye 已提交
114

J
Jiawei Wang 已提交
115
| Compile Options  |                    Description             | Default |
B
barrierye 已提交
116 117 118 119 120 121 122 123 124 125 126
| :--------------: | :----------------------------------------: | :--: |
|     WITH_AVX     | Compile Paddle Serving with AVX intrinsics | OFF  |
|     WITH_MKL     |  Compile Paddle Serving with MKL support   | OFF  |
|     WITH_GPU     |   Compile Paddle Serving with NVIDIA GPU   | OFF  |
|    CUDNN_ROOT    |    Define CuDNN library and header path    |      |
|      CLIENT      |       Compile Paddle Serving Client        | OFF  |
|      SERVER      |       Compile Paddle Serving Server        | OFF  |
|       APP        |     Compile Paddle Serving App package     | OFF  |
| WITH_ELASTIC_CTR |        Compile ELASITC-CTR solution        | OFF  |
|       PACK       |              Compile for whl               | OFF  |

J
Jiawei Wang 已提交
127
### WITH_GPU Option
B
barrierye 已提交
128

J
Jiawei Wang 已提交
129
Paddle Serving supports prediction on the GPU through the PaddlePaddle inference library. The WITH_GPU option is used to detect basic libraries such as CUDA/CUDNN on the system. If an appropriate version is detected, the GPU Kernel will be compiled when PaddlePaddle is compiled.
B
barrierye 已提交
130

J
Jiawei Wang 已提交
131
To compile the Paddle Serving GPU version on bare metal, you need to install these basic libraries:
B
barrierye 已提交
132 133 134 135 136

- CUDA
- CuDNN
- NCCL2

J
Jiawei Wang 已提交
137 138 139 140
Note here:

1. The basic library versions such as CUDA/CUDNN installed on the system where Serving is compiled, needs to be compatible with the actual GPU device. For example, the Tesla V100 card requires at least CUDA 9.0. If the version of the basic library such as CUDA used during compilation is too low, the generated GPU code is not compatible with the actual hardware device, which will cause the Serving process to fail to start or serious problems such as coredump.
2. Install the CUDA driver compatible with the actual GPU device on the system running Paddle Serving, and install the basic library compatible with the CUDA/CuDNN version used during compilation. If the version of CUDA/CuDNN installed on the system running Paddle Serving is lower than the version used at compile time, it may cause some cuda function call failures and other problems.
B
barrierye 已提交
141 142


J
Jiawei Wang 已提交
143
The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
B
barrierye 已提交
144 145 146 147 148 149

|        |  CUDA   |          CuDNN           | NCCL2  |
| :----: | :-----: | :----------------------: | :----: |
| CUDA 8 | 8.0.61  | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4  |
| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 |

J
Jiawei Wang 已提交
150
### How to make the compiler detect the CuDNN library
B
barrierye 已提交
151

J
Jiawei Wang 已提交
152
Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN.
B
barrierye 已提交
153

J
Jiawei Wang 已提交
154
### How to make the compiler detect the nccl library
B
barrierye 已提交
155

J
Jiawei Wang 已提交
156
After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example):
B
barrierye 已提交
157 158 159 160 161 162

```shell
export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH
```