network_conf.py 2.2 KB
Newer Older
G
guru4elephant 已提交
1 2 3
import paddle.fluid as fluid
import math

G
guru4elephant 已提交
4 5
def dnn_model(dense_input, sparse_inputs, label,
              embedding_size, sparse_feature_dim):
G
guru4elephant 已提交
6 7 8 9 10 11 12 13 14 15 16

    def embedding_layer(input):
        emb = fluid.layers.embedding(
            input=input,
            is_sparse=True,
            is_distributed=False,
            size=[sparse_feature_dim, embedding_size],
            param_attr=fluid.ParamAttr(name="SparseFeatFactors",
                                       initializer=fluid.initializer.Uniform()))
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')

G
guru4elephant 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
    def mlp_input_tensor(emb_sums, dense_tensor):
        if isinstance(dense_tensor, fluid.Variable):
            return fluid.layers.concat(emb_sums, axis=1)
        else:
            return fluid.layers.concat(emb_sums + [dense_tensor], axis=1)

    def mlp(mlp_input):
        fc1 = fluid.layers.fc(input=mlp_input, size=400, act='relu',
                              param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                                  scale=1 / math.sqrt(mlp_input.shape[1]))))
        fc2 = fluid.layers.fc(input=fc1, size=400, act='relu',
                              param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                                  scale=1 / math.sqrt(fc1.shape[1]))))
        fc3 = fluid.layers.fc(input=fc2, size=400, act='relu',
                              param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                                  scale=1 / math.sqrt(fc2.shape[1]))))
        pre = fluid.layers.fc(input=fc3, size=2, act='softmax',
G
guru4elephant 已提交
34 35
                              param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                                  scale=1 / math.sqrt(fc3.shape[1]))))
G
guru4elephant 已提交
36 37 38 39 40
        return pre

    emb_sums = list(map(embedding_layer, sparse_inputs))
    mlp_in = mlp_input_tensor(emb_sums, dense_input)
    predict = mlp(mlp_in)
G
guru4elephant 已提交
41 42 43 44 45 46
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.reduce_sum(cost)
    accuracy = fluid.layers.accuracy(input=predict, label=label)
    auc_var, batch_auc_var, auc_states = \
        fluid.layers.auc(input=predict, label=label, num_thresholds=2 ** 12, slide_steps=20)
    return predict, avg_cost, auc_var, batch_auc_var