__init__.py 31.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16 17 18 19 20

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
M
MRXLT 已提交
21
import socket
22
import paddle_serving_server_gpu as paddle_serving_server
23
import time
24
from .version import serving_server_version
M
MRXLT 已提交
25
from contextlib import closing
G
guru4elephant 已提交
26
import argparse
B
barrierye 已提交
27
import collections
M
MRXLT 已提交
28
import fcntl
M
MRXLT 已提交
29
import shutil
B
barrierye 已提交
30 31 32
import numpy as np
import grpc
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
33 34 35
import sys
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
36 37 38 39
from .proto import multi_lang_general_model_service_pb2_grpc
from multiprocessing import Pool, Process
from concurrent import futures

B
barrierye 已提交
40

41 42
def serve_args():
    parser = argparse.ArgumentParser("serve")
43 44 45 46 47 48 49 50 51 52 53 54 55
    parser.add_argument(
        "--thread", type=int, default=2, help="Concurrency of server")
    parser.add_argument(
        "--model", type=str, default="", help="Model for serving")
    parser.add_argument(
        "--port", type=int, default=9292, help="Port of the starting gpu")
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
        "--device", type=str, default="gpu", help="Type of device")
B
barrierye 已提交
56
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    parser.add_argument(
        "--name", type=str, default="None", help="Default service name")
    parser.add_argument(
        "--mem_optim_off",
        default=False,
        action="store_true",
        help="Memory optimize")
    parser.add_argument(
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
    parser.add_argument(
        "--max_body_size",
        type=int,
        default=512 * 1024 * 1024,
        help="Limit sizes of messages")
    parser.add_argument(
        "--use_multilang",
        default=False,
        action="store_true",
        help="Use Multi-language-service")
    parser.add_argument(
        "--product_name",
        type=str,
        default=None,
        help="product_name for authentication")
    parser.add_argument(
        "--container_id",
        type=str,
        default=None,
        help="container_id for authentication")
86
    return parser.parse_args()
M
MRXLT 已提交
87

B
barrierye 已提交
88

M
MRXLT 已提交
89 90 91
class OpMaker(object):
    def __init__(self):
        self.op_dict = {
M
MRXLT 已提交
92 93 94 95 96 97
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
98
            "general_dist_kv_infer": "GeneralDistKVInferOp",
M
MRXLT 已提交
99
            "general_dist_kv": "GeneralDistKVOp"
M
MRXLT 已提交
100
        }
B
barrierye 已提交
101
        self.node_name_suffix_ = collections.defaultdict(int)
M
MRXLT 已提交
102

B
barrierye 已提交
103 104
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
        if node_type not in self.op_dict:
105 106
            raise Exception("Op type {} is not supported right now".format(
                node_type))
M
MRXLT 已提交
107
        node = server_sdk.DAGNode()
B
barrierye 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

        node.type = self.op_dict[node_type]
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
M
MRXLT 已提交
130 131 132 133 134 135 136 137


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
138 139 140 141 142 143 144
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
M
MRXLT 已提交
145
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
146 147 148 149 150 151 152 153
            if len(node.dependencies) == 0:
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
T
TeslaZhao 已提交
154
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'
155 156
                        .format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
M
MRXLT 已提交
157 158 159 160 161 162 163 164
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


B
barrierye 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


M
MRXLT 已提交
183 184 185 186 187 188 189
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.memory_optimization = False
M
MRXLT 已提交
190
        self.ir_optimization = False
M
MRXLT 已提交
191 192 193 194 195 196
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
197
        self.cube_config_fn = "cube.conf"
M
MRXLT 已提交
198 199
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
200
        self.num_threads = 2
M
MRXLT 已提交
201 202
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
203
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
204 205
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
206
        self.use_local_bin = False
M
MRXLT 已提交
207
        self.gpuid = 0
B
barrierye 已提交
208
        self.model_config_paths = None  # for multi-model in a workflow
209 210
        self.product_name = None
        self.container_id = None
M
MRXLT 已提交
211 212 213 214 215 216 217

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
218 219 220 221 222 223 224 225
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

M
MRXLT 已提交
226 227 228 229 230 231 232 233 234
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
235 236 237
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

M
MRXLT 已提交
238 239 240
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
241 242 243
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

244 245 246 247 248 249 250 251 252 253
    def set_product_name(self, product_name=None):
        if product_name == None:
            raise ValueError("product_name can't be None.")
        self.product_name = product_name

    def set_container_id(self, container_id):
        if container_id == None:
            raise ValueError("container_id can't be None.")
        self.container_id = container_id

M
MRXLT 已提交
254 255 256 257
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
258

M
MRXLT 已提交
259
    def check_cuda(self):
M
MRXLT 已提交
260 261 262
        if os.system("ls /dev/ | grep nvidia > /dev/null") == 0:
            pass
        else:
M
MRXLT 已提交
263
            raise SystemExit(
M
MRXLT 已提交
264
                "GPU not found, please check your environment or use cpu version by \"pip install paddle_serving_server\""
M
MRXLT 已提交
265 266
            )

M
MRXLT 已提交
267 268 269
    def set_gpuid(self, gpuid=0):
        self.gpuid = gpuid

B
barrierye 已提交
270
    def _prepare_engine(self, model_config_paths, device):
M
MRXLT 已提交
271 272 273
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

B
barrierye 已提交
274 275 276 277 278 279 280 281 282 283 284 285
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            # engine.reloadable_meta = model_config_path + "/fluid_time_file"
            engine.reloadable_meta = self.workdir + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
286
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
287 288 289 290 291 292 293 294 295
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
M
MRXLT 已提交
296 297 298 299 300 301 302 303 304 305

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

M
MRXLT 已提交
306
    def _prepare_resource(self, workdir, cube_conf):
307
        self.workdir = workdir
M
MRXLT 已提交
308 309 310 311 312
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
313 314 315 316 317
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
M
MRXLT 已提交
318 319 320 321 322
                        if cube_conf == None:
                            raise ValueError(
                                "Please set the path of cube.conf while use dist_kv op."
                            )
                        shutil.copy(cube_conf, workdir)
M
MRXLT 已提交
323 324 325 326
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn
327 328 329 330
            if self.product_name != None:
                self.resource_conf.auth_product_name = self.product_name
            if self.container_id != None:
                self.resource_conf.auth_container_id = self.container_id
M
MRXLT 已提交
331 332 333 334 335

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
336 337 338 339
    def load_model_config(self, model_config_paths):
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
340
        # of multiple models are the same.
B
barrierye 已提交
341 342
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
343
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
344
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
345 346 347
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
348
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
349 350
            ]
            engine_name = None
B
barrierye 已提交
351
            for node in self.workflow_conf.workflows[0].nodes:
B
barrierye 已提交
352 353 354 355 356 357 358 359 360
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
361 362 363 364 365 366 367 368
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
369 370
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
371 372 373 374 375
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

M
MRXLT 已提交
376
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
377 378 379
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
M
MRXLT 已提交
380 381 382 383 384 385 386 387
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
M
MRXLT 已提交
388 389 390 391 392 393 394 395 396

        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        import re
        for line in version_file.readlines():
            if re.match("cuda_version", line):
                cuda_version = line.split("\"")[1]
                device_version = "serving-gpu-cuda" + cuda_version + "-"

397 398
        folder_name = device_version + serving_server_version
        tar_name = folder_name + ".tar.gz"
M
MRXLT 已提交
399
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
400 401 402 403
        self.server_path = os.path.join(self.module_path, folder_name)

        download_flag = "{}/{}.is_download".format(self.module_path,
                                                   folder_name)
M
MRXLT 已提交
404 405 406

        fcntl.flock(version_file, fcntl.LOCK_EX)

407 408 409 410 411
        if os.path.exists(download_flag):
            os.chdir(self.cur_path)
            self.bin_path = self.server_path + "/serving"
            return

M
MRXLT 已提交
412
        if not os.path.exists(self.server_path):
413 414
            os.system("touch {}/{}.is_download".format(self.module_path,
                                                       folder_name))
M
MRXLT 已提交
415
            print('Frist time run, downloading PaddleServing components ...')
M
MRXLT 已提交
416

M
MRXLT 已提交
417 418 419 420
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
421
                raise SystemExit(
T
TeslaZhao 已提交
422 423
                    'Download failed, please check your network or permission of {}.'
                    .format(self.module_path))
M
MRXLT 已提交
424 425 426 427 428 429 430 431 432
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
433
                    raise SystemExit(
T
TeslaZhao 已提交
434 435
                        'Decompressing failed, please check your permission of {} or disk space left.'
                        .format(self.module_path))
M
MRXLT 已提交
436 437
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
438
        #release lock
B
barrierye 已提交
439
        version_file.close()
M
MRXLT 已提交
440 441 442
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

M
MRXLT 已提交
443 444 445 446 447
    def prepare_server(self,
                       workdir=None,
                       port=9292,
                       device="cpu",
                       cube_conf=None):
M
MRXLT 已提交
448 449 450 451 452 453 454
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

M
MRXLT 已提交
455
        if not self.port_is_available(port):
G
gongweibao 已提交
456
            raise SystemExit("Port {} is already used".format(port))
M
MRXLT 已提交
457

G
guru4elephant 已提交
458
        self.set_port(port)
M
MRXLT 已提交
459
        self._prepare_resource(workdir, cube_conf)
B
barrierye 已提交
460
        self._prepare_engine(self.model_config_paths, device)
M
MRXLT 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
474
    def port_is_available(self, port):
M
MRXLT 已提交
475 476
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
477
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
478 479 480 481 482
        if result != 0:
            return True
        else:
            return False

M
MRXLT 已提交
483 484 485
    def run_server(self):
        # just run server with system command
        # currently we do not load cube
M
MRXLT 已提交
486
        self.check_local_bin()
M
MRXLT 已提交
487 488
        if not self.use_local_bin:
            self.download_bin()
B
fix bug  
barrierye 已提交
489 490 491
            # wait for other process to download server bin
            while not os.path.exists(self.server_path):
                time.sleep(1)
M
MRXLT 已提交
492 493
        else:
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
494
        self.check_cuda()
M
MRXLT 已提交
495 496 497 498 499 500 501 502 503 504 505
        command = "{} " \
                  "-enable_model_toolkit " \
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
506 507
                  "-workflow_file {} " \
                  "-bthread_concurrency {} " \
M
MRXLT 已提交
508 509
                  "-gpuid {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
510 511 512 513 514 515 516 517 518 519
                      self.bin_path,
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
                      self.workdir,
M
MRXLT 已提交
520 521
                      self.workflow_fn,
                      self.num_threads,
M
MRXLT 已提交
522 523
                      self.gpuid,
                      self.max_body_size)
M
MRXLT 已提交
524 525
        print("Going to Run Comand")
        print(command)
526

M
MRXLT 已提交
527
        os.system(command)
B
barrierye 已提交
528 529


B
barrierye 已提交
530 531 532
class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
                                     MultiLangGeneralModelServiceServicer):
    def __init__(self, model_config_path, is_multi_model, endpoints):
B
barrierye 已提交
533
        self.is_multi_model_ = is_multi_model
B
barrierye 已提交
534 535 536 537 538 539 540 541
        self.model_config_path_ = model_config_path
        self.endpoints_ = endpoints
        with open(self.model_config_path_) as f:
            self.model_config_str_ = str(f.read())
        self._parse_model_config(self.model_config_str_)
        self._init_bclient(self.model_config_path_, self.endpoints_)

    def _init_bclient(self, model_config_path, endpoints, timeout_ms=None):
B
barrierye 已提交
542 543
        from paddle_serving_client import Client
        self.bclient_ = Client()
B
barrierye 已提交
544 545
        if timeout_ms is not None:
            self.bclient_.set_rpc_timeout_ms(timeout_ms)
B
barrierye 已提交
546
        self.bclient_.load_client_config(model_config_path)
B
barrierye 已提交
547 548
        self.bclient_.connect(endpoints)

B
barrierye 已提交
549
    def _parse_model_config(self, model_config_str):
B
barrierye 已提交
550
        model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
551 552
        model_conf = google.protobuf.text_format.Merge(model_config_str,
                                                       model_conf)
B
barrierye 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

B
barrierye 已提交
577
    def _unpack_inference_request(self, request):
B
barrierye 已提交
578 579
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
B
barrierye 已提交
580
        is_python = request.is_python
B
barriery 已提交
581
        log_id = request.log_id
B
barrierye 已提交
582 583 584 585
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
B
barrierye 已提交
586
                var = feed_inst.tensor_array[idx]
B
barrierye 已提交
587 588
                v_type = self.feed_types_[name]
                data = None
B
barrierye 已提交
589 590 591 592 593
                if is_python:
                    if v_type == 0:
                        data = np.frombuffer(var.data, dtype="int64")
                    elif v_type == 1:
                        data = np.frombuffer(var.data, dtype="float32")
B
barrierye 已提交
594 595
                    elif v_type == 2:
                        data = np.frombuffer(var.data, dtype="int32")
B
barrierye 已提交
596 597
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
598
                else:
B
barrierye 已提交
599 600 601 602
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
B
barrierye 已提交
603
                    elif v_type == 2:
604
                        data = np.array(list(var.int_data), dtype="int32")
B
barrierye 已提交
605 606 607
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
B
barrierye 已提交
608 609
                feed_dict[name] = data
            feed_batch.append(feed_dict)
B
fix bug  
barriery 已提交
610
        return feed_batch, fetch_names, is_python, log_id
B
barrierye 已提交
611

B
barrierye 已提交
612
    def _pack_inference_response(self, ret, fetch_names, is_python):
B
barrierye 已提交
613
        resp = multi_lang_general_model_service_pb2.InferenceResponse()
B
fix bug  
barrierye 已提交
614
        if ret is None:
B
barrierye 已提交
615
            resp.err_code = 1
B
fix bug  
barrierye 已提交
616 617
            return resp
        results, tag = ret
B
barrierye 已提交
618
        resp.tag = tag
B
barrierye 已提交
619
        resp.err_code = 0
B
barrierye 已提交
620

B
barrierye 已提交
621 622 623 624 625 626 627 628 629 630
        if not self.is_multi_model_:
            results = {'general_infer_0': results}
        for model_name, model_result in results.items():
            model_output = multi_lang_general_model_service_pb2.ModelOutput()
            inst = multi_lang_general_model_service_pb2.FetchInst()
            for idx, name in enumerate(fetch_names):
                tensor = multi_lang_general_model_service_pb2.Tensor()
                v_type = self.fetch_types_[name]
                if is_python:
                    tensor.data = model_result[name].tobytes()
B
barrierye 已提交
631
                else:
B
barrierye 已提交
632
                    if v_type == 0:  # int64
633 634
                        tensor.int64_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
B
barrierye 已提交
635
                    elif v_type == 1:  # float32
636 637
                        tensor.float_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
B
barrierye 已提交
638
                    elif v_type == 2:  # int32
639 640
                        tensor.int_data.extend(model_result[name].reshape(-1)
                                               .tolist())
B
barrierye 已提交
641 642 643 644
                    else:
                        raise Exception("error type.")
                tensor.shape.extend(list(model_result[name].shape))
                if name in self.lod_tensor_set_:
645 646
                    tensor.lod.extend(model_result["{}.lod".format(name)]
                                      .tolist())
B
barrierye 已提交
647 648 649 650
                inst.tensor_array.append(tensor)
            model_output.insts.append(inst)
            model_output.engine_name = model_name
            resp.outputs.append(model_output)
B
barrierye 已提交
651 652
        return resp

B
barrierye 已提交
653 654 655 656 657 658 659
    def SetTimeout(self, request, context):
        # This porcess and Inference process cannot be operate at the same time.
        # For performance reasons, do not add thread lock temporarily.
        timeout_ms = request.timeout_ms
        self._init_bclient(self.model_config_path_, self.endpoints_, timeout_ms)
        resp = multi_lang_general_model_service_pb2.SimpleResponse()
        resp.err_code = 0
B
barrierye 已提交
660 661
        return resp

B
barrierye 已提交
662
    def Inference(self, request, context):
B
barriery 已提交
663 664
        feed_dict, fetch_names, is_python, log_id \
                = self._unpack_inference_request(request)
665 666 667 668 669
        ret = self.bclient_.predict(
            feed=feed_dict,
            fetch=fetch_names,
            need_variant_tag=True,
            log_id=log_id)
B
barrierye 已提交
670 671 672 673 674 675
        return self._pack_inference_response(ret, fetch_names, is_python)

    def GetClientConfig(self, request, context):
        resp = multi_lang_general_model_service_pb2.GetClientConfigResponse()
        resp.client_config_str = self.model_config_str_
        return resp
B
barrierye 已提交
676 677 678


class MultiLangServer(object):
B
barrierye 已提交
679
    def __init__(self):
B
barrierye 已提交
680
        self.bserver_ = Server()
B
barrierye 已提交
681 682 683 684 685
        self.worker_num_ = 4
        self.body_size_ = 64 * 1024 * 1024
        self.concurrency_ = 100000
        self.is_multi_model_ = False  # for model ensemble

B
barrierye 已提交
686
    def set_max_concurrency(self, concurrency):
B
barrierye 已提交
687
        self.concurrency_ = concurrency
B
barrierye 已提交
688 689 690
        self.bserver_.set_max_concurrency(concurrency)

    def set_num_threads(self, threads):
B
barrierye 已提交
691
        self.worker_num_ = threads
B
barrierye 已提交
692 693 694 695
        self.bserver_.set_num_threads(threads)

    def set_max_body_size(self, body_size):
        self.bserver_.set_max_body_size(body_size)
B
barrierye 已提交
696 697 698 699 700 701
        if body_size >= self.body_size_:
            self.body_size_ = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )
B
barrierye 已提交
702 703 704 705 706 707

    def set_port(self, port):
        self.gport_ = port

    def set_reload_interval(self, interval):
        self.bserver_.set_reload_interval(interval)
B
barrierye 已提交
708 709 710 711

    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

B
barrierye 已提交
712 713 714 715 716 717 718 719 720 721 722 723
    def set_op_graph(self, op_graph):
        self.bserver_.set_op_graph(op_graph)

    def set_memory_optimize(self, flag=False):
        self.bserver_.set_memory_optimize(flag)

    def set_ir_optimize(self, flag=False):
        self.bserver_.set_ir_optimize(flag)

    def set_gpuid(self, gpuid=0):
        self.bserver_.set_gpuid(gpuid)

B
barrierye 已提交
724 725 726 727 728 729 730 731 732 733 734
    def load_model_config(self, server_config_paths, client_config_path=None):
        self.bserver_.load_model_config(server_config_paths)
        if client_config_path is None:
            if isinstance(server_config_paths, dict):
                self.is_multi_model_ = True
                client_config_path = '{}/serving_server_conf.prototxt'.format(
                    list(server_config_paths.items())[0][1])
            else:
                client_config_path = '{}/serving_server_conf.prototxt'.format(
                    server_config_paths)
        self.bclient_config_path_ = client_config_path
B
barrierye 已提交
735

M
MRXLT 已提交
736 737 738 739 740
    def prepare_server(self,
                       workdir=None,
                       port=9292,
                       device="cpu",
                       cube_conf=None):
B
barrierye 已提交
741 742
        if not self._port_is_available(port):
            raise SystemExit("Prot {} is already used".format(port))
B
barrierye 已提交
743 744 745
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
746 747
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
B
barrierye 已提交
748 749
                self.port_list_.append(default_port + i)
                break
750 751 752 753 754
        self.bserver_.prepare_server(
            workdir=workdir,
            port=self.port_list_[0],
            device=device,
            cube_conf=cube_conf)
B
barrierye 已提交
755
        self.set_port(port)
B
barrierye 已提交
756 757 758 759 760 761 762 763 764 765 766

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
767 768
        p_bserver = Process(
            target=self._launch_brpc_service, args=(self.bserver_, ))
B
barrierye 已提交
769
        p_bserver.start()
B
barrierye 已提交
770 771
        options = [('grpc.max_send_message_length', self.body_size_),
                   ('grpc.max_receive_message_length', self.body_size_)]
B
barrierye 已提交
772
        server = grpc.server(
B
barrierye 已提交
773 774 775
            futures.ThreadPoolExecutor(max_workers=self.worker_num_),
            options=options,
            maximum_concurrent_rpcs=self.concurrency_)
B
barrierye 已提交
776
        multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
B
barrierye 已提交
777
            MultiLangServerServiceServicer(
B
barrierye 已提交
778
                self.bclient_config_path_, self.is_multi_model_,
B
barrierye 已提交
779
                ["0.0.0.0:{}".format(self.port_list_[0])]), server)
B
barrierye 已提交
780 781 782 783
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
        p_bserver.join()
        server.wait_for_termination()