ctr_prediction_op.cpp 9.1 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/ctr_prediction_op.h"
#include <algorithm>
W
wangguibao 已提交
17
#include <string>
W
wangguibao 已提交
18 19 20
#if 1
#include <iomanip>
#endif
W
wangguibao 已提交
21
#include "cube/cube-api/include/cube_api.h"
W
wangguibao 已提交
22
#include "predictor/framework/infer.h"
W
wangguibao 已提交
23
#include "predictor/framework/kv_manager.h"
W
wangguibao 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#include "predictor/framework/memory.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::ctr_prediction::CTRResInstance;
using baidu::paddle_serving::predictor::ctr_prediction::Response;
using baidu::paddle_serving::predictor::ctr_prediction::CTRReqInstance;
using baidu::paddle_serving::predictor::ctr_prediction::Request;

W
wangguibao 已提交
36 37
const int VARIABLE_NAME_LEN = 256;

W
wangguibao 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
// Total 26 sparse input + 1 dense input
const int CTR_PREDICTION_INPUT_SLOTS = 27;

// First 26: sparse input
const int CTR_PREDICTION_SPARSE_SLOTS = 26;

// Last 1: dense input
const int CTR_PREDICTION_DENSE_SLOT_ID = 26;
const int CTR_PREDICTION_DENSE_DIM = 13;
const int CTR_PREDICTION_EMBEDDING_SIZE = 10;

void fill_response_with_message(Response *response,
                                int err_code,
                                std::string err_msg) {
  if (response == NULL) {
    LOG(ERROR) << "response is NULL";
    return;
  }

  response->set_err_code(err_code);
  response->set_err_msg(err_msg);
  return;
}
W
wangguibao 已提交
61 62 63 64 65

int CTRPredictionOp::inference() {
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
W
wangguibao 已提交
66 67
  Response *res = mutable_data<Response>();

W
wangguibao 已提交
68 69 70
  uint32_t sample_size = req->instances_size();
  if (sample_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
W
wangguibao 已提交
71
    fill_response_with_message(res, -1, "Sample size invalid");
W
wangguibao 已提交
72
    return 0;
W
wangguibao 已提交
73 74 75
  }

  paddle::PaddleTensor lod_tensors[CTR_PREDICTION_INPUT_SLOTS];
W
wangguibao 已提交
76
  for (int i = 0; i < CTR_PREDICTION_INPUT_SLOTS; ++i) {
W
wangguibao 已提交
77 78 79 80 81 82
    lod_tensors[i].dtype = paddle::PaddleDType::FLOAT32;
    std::vector<std::vector<size_t>> &lod = lod_tensors[i].lod;
    lod.resize(1);
    lod[0].push_back(0);
  }

W
wangguibao 已提交
83
  // Query cube API for sparse embeddings
W
wangguibao 已提交
84 85
  std::vector<uint64_t> keys;
  std::vector<rec::mcube::CubeValue> values;
W
wangguibao 已提交
86 87 88

  for (uint32_t si = 0; si < sample_size; ++si) {
    const CTRReqInstance &req_instance = req->instances(si);
W
wangguibao 已提交
89
    if (req_instance.sparse_ids_size() != CTR_PREDICTION_SPARSE_SLOTS) {
W
wangguibao 已提交
90
      std::ostringstream iss;
W
wangguibao 已提交
91
      iss << "Sparse input size != " << CTR_PREDICTION_SPARSE_SLOTS;
W
wangguibao 已提交
92
      fill_response_with_message(res, -1, iss.str());
W
wangguibao 已提交
93
      return 0;
W
wangguibao 已提交
94 95 96 97 98 99 100
    }

    for (int i = 0; i < req_instance.sparse_ids_size(); ++i) {
      keys.push_back(req_instance.sparse_ids(i));
    }
  }

W
wangguibao 已提交
101 102 103 104
  rec::mcube::CubeAPI *cube = rec::mcube::CubeAPI::instance();
  predictor::KVManager &kv_manager = predictor::KVManager::instance();
  const predictor::KVInfo *kvinfo =
      kv_manager.get_kv_info(CTR_PREDICTION_MODEL_NAME);
W
wangguibao 已提交
105 106 107
  if (kvinfo != NULL) {
    std::string table_name;
    if (kvinfo->sparse_param_service_type != configure::EngineDesc::NONE) {
W
wangguibao 已提交
108
      table_name = kvinfo->sparse_param_service_table_name;
W
wangguibao 已提交
109
    }
W
wangguibao 已提交
110

W
wangguibao 已提交
111 112 113 114 115 116 117 118 119 120
    if (kvinfo->sparse_param_service_type == configure::EngineDesc::LOCAL) {
      // Query local KV service
    } else if (kvinfo->sparse_param_service_type ==
               configure::EngineDesc::REMOTE) {
      int ret = cube->seek(table_name, keys, &values);
      if (ret != 0) {
        fill_response_with_message(res, -1, "Query cube for embeddings error");
        LOG(ERROR) << "Query cube for embeddings error";
        return -1;
      }
W
wangguibao 已提交
121
    }
W
wangguibao 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135

#if 1
    for (int i = 0; i < keys.size(); ++i) {
      std::ostringstream oss;
      oss << keys[i] << ": ";
      const char *value = (values[i].buff.data());
      if (values[i].buff.size() !=
          sizeof(float) * CTR_PREDICTION_EMBEDDING_SIZE) {
        LOG(WARNING) << "Key " << keys[i] << " has values less than "
                     << CTR_PREDICTION_EMBEDDING_SIZE;
      }

      for (int j = 0; j < values[i].buff.size(); ++j) {
        oss << std::hex << std::uppercase << std::setw(2) << std::setfill('0')
W
wangguibao 已提交
136
            << (static_cast<int>(value[j]) & 0xff);
W
wangguibao 已提交
137 138 139 140 141
      }

      LOG(INFO) << oss.str().c_str();
    }
#endif
W
wangguibao 已提交
142
  }
W
wangguibao 已提交
143

W
wangguibao 已提交
144
  // Sparse embeddings
W
wangguibao 已提交
145
  for (int i = 0; i < CTR_PREDICTION_SPARSE_SLOTS; ++i) {
W
wangguibao 已提交
146
    paddle::PaddleTensor &lod_tensor = lod_tensors[i];
W
wangguibao 已提交
147 148
    std::vector<std::vector<size_t>> &lod = lod_tensor.lod;

W
wangguibao 已提交
149 150 151 152
    char name[VARIABLE_NAME_LEN];
    snprintf(name, VARIABLE_NAME_LEN, "embedding_%d.tmp_0", i);
    lod_tensor.name = std::string(name);

W
wangguibao 已提交
153 154 155 156 157
    for (uint32_t si = 0; si < sample_size; ++si) {
      const CTRReqInstance &req_instance = req->instances(si);
      lod[0].push_back(lod[0].back() + 1);
    }

W
wangguibao 已提交
158 159 160
    lod_tensor.shape = {lod[0].back(), CTR_PREDICTION_EMBEDDING_SIZE};
    lod_tensor.data.Resize(lod[0].back() * sizeof(float) *
                           CTR_PREDICTION_EMBEDDING_SIZE);
W
wangguibao 已提交
161 162 163

    int offset = 0;
    for (uint32_t si = 0; si < sample_size; ++si) {
W
wangguibao 已提交
164
      float *data_ptr = static_cast<float *>(lod_tensor.data.data()) + offset;
W
wangguibao 已提交
165
      const CTRReqInstance &req_instance = req->instances(si);
W
wangguibao 已提交
166 167 168 169 170 171 172

      int idx = si * CTR_PREDICTION_SPARSE_SLOTS + i;
      if (values[idx].buff.size() !=
          sizeof(float) * CTR_PREDICTION_EMBEDDING_SIZE) {
        LOG(ERROR) << "Embedding vector size not expected";
        fill_response_with_message(
            res, -1, "Embedding vector size not expected");
W
wangguibao 已提交
173
        return 0;
W
wangguibao 已提交
174 175 176 177
      }

      memcpy(data_ptr, values[idx].buff.data(), values[idx].buff.size());
      offset += CTR_PREDICTION_EMBEDDING_SIZE;
W
wangguibao 已提交
178 179 180 181 182
    }

    in->push_back(lod_tensor);
  }

W
wangguibao 已提交
183
  // Dense features
W
wangguibao 已提交
184 185
  paddle::PaddleTensor &lod_tensor = lod_tensors[CTR_PREDICTION_DENSE_SLOT_ID];
  lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
W
wangguibao 已提交
186
  std::vector<std::vector<size_t>> &lod = lod_tensor.lod;
W
wangguibao 已提交
187
  lod_tensor.name = std::string("dense_input");
W
wangguibao 已提交
188 189 190

  for (uint32_t si = 0; si < sample_size; ++si) {
    const CTRReqInstance &req_instance = req->instances(si);
W
wangguibao 已提交
191 192 193 194
    if (req_instance.dense_ids_size() != CTR_PREDICTION_DENSE_DIM) {
      std::ostringstream iss;
      iss << "dense input size != " << CTR_PREDICTION_DENSE_DIM;
      fill_response_with_message(res, -1, iss.str());
W
wangguibao 已提交
195
      return 0;
W
wangguibao 已提交
196
    }
W
wangguibao 已提交
197 198 199
    lod[0].push_back(lod[0].back() + req_instance.dense_ids_size());
  }

W
wangguibao 已提交
200 201 202
  lod_tensor.shape = {lod[0].back() / CTR_PREDICTION_DENSE_DIM,
                      CTR_PREDICTION_DENSE_DIM};
  lod_tensor.data.Resize(lod[0].back() * sizeof(float));
W
wangguibao 已提交
203 204 205

  int offset = 0;
  for (uint32_t si = 0; si < sample_size; ++si) {
W
wangguibao 已提交
206
    float *data_ptr = static_cast<float *>(lod_tensor.data.data()) + offset;
W
wangguibao 已提交
207 208 209
    const CTRReqInstance &req_instance = req->instances(si);
    int id_count = req_instance.dense_ids_size();
    memcpy(data_ptr,
W
wangguibao 已提交
210
           req_instance.dense_ids().data(),
W
wangguibao 已提交
211
           sizeof(float) * req_instance.dense_ids_size());
W
wangguibao 已提交
212 213 214 215 216 217 218 219
    offset += req_instance.dense_ids_size();
  }

  in->push_back(lod_tensor);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
W
wangguibao 已提交
220
    fill_response_with_message(res, -1, "Failed get thread local resource");
W
wangguibao 已提交
221
    return 0;
W
wangguibao 已提交
222 223 224 225 226 227 228
  }

  // call paddle fluid model for inferencing
  if (predictor::InferManager::instance().infer(
          CTR_PREDICTION_MODEL_NAME, in, out, sample_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: "
               << CTR_PREDICTION_MODEL_NAME;
W
wangguibao 已提交
229
    fill_response_with_message(res, -1, "Failed do infer in fluid model");
W
wangguibao 已提交
230
    return 0;
W
wangguibao 已提交
231 232
  }

W
wangguibao 已提交
233
  if (out->size() != sample_size) {
W
wangguibao 已提交
234
    LOG(ERROR) << "Output tensor size not equal that of input";
W
wangguibao 已提交
235
    fill_response_with_message(res, -1, "Output size != input size");
W
wangguibao 已提交
236
    return 0;
W
wangguibao 已提交
237 238 239 240 241 242 243 244
  }

  for (size_t i = 0; i < out->size(); ++i) {
    int dim1 = out->at(i).shape[0];
    int dim2 = out->at(i).shape[1];

    if (out->at(i).dtype != paddle::PaddleDType::FLOAT32) {
      LOG(ERROR) << "Expected data type float";
W
wangguibao 已提交
245
      fill_response_with_message(res, -1, "Expected data type float");
W
wangguibao 已提交
246
      return 0;
W
wangguibao 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    }

    float *data = static_cast<float *>(out->at(i).data.data());
    for (int j = 0; j < dim1; ++j) {
      CTRResInstance *res_instance = res->add_predictions();
      res_instance->set_prob0(data[j * dim2]);
      res_instance->set_prob1(data[j * dim2 + 1]);
    }
  }

  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);

  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
W
wangguibao 已提交
268 269 270

  res->set_err_code(0);
  res->set_err_msg(std::string(""));
W
wangguibao 已提交
271 272 273 274 275 276 277 278
  return 0;
}

DEFINE_OP(CTRPredictionOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu