__init__.py 25.7 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16 17 18 19 20

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
M
MRXLT 已提交
21
import socket
22
import paddle_serving_server_gpu as paddle_serving_server
23
import time
24
from .version import serving_server_version
M
MRXLT 已提交
25
from contextlib import closing
G
guru4elephant 已提交
26
import argparse
B
barrierye 已提交
27
import collections
M
MRXLT 已提交
28
import fcntl
M
MRXLT 已提交
29

B
barrierye 已提交
30 31 32
import numpy as np
import grpc
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
33 34 35
import sys
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
36 37 38 39
from .proto import multi_lang_general_model_service_pb2_grpc
from multiprocessing import Pool, Process
from concurrent import futures

B
barrierye 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def serve_args():
    parser = argparse.ArgumentParser("serve")
    parser.add_argument(
        "--thread", type=int, default=10, help="Concurrency of server")
    parser.add_argument(
        "--model", type=str, default="", help="Model for serving")
    parser.add_argument(
        "--port", type=int, default=9292, help="Port of the starting gpu")
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
        "--device", type=str, default="gpu", help="Type of device")
B
barrierye 已提交
56
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
57
    parser.add_argument(
58
        "--name", type=str, default="None", help="Default service name")
M
MRXLT 已提交
59
    parser.add_argument(
M
MRXLT 已提交
60 61 62 63
        "--mem_optim",
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
64
    parser.add_argument(
M
MRXLT 已提交
65
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
66 67 68
    parser.add_argument(
        "--max_body_size",
        type=int,
M
MRXLT 已提交
69
        default=512 * 1024 * 1024,
M
MRXLT 已提交
70
        help="Limit sizes of messages")
71 72 73 74
    parser.add_argument(
        "--use_multilang",
        action='store_true',
        help="Use Multi-language-service")
75
    return parser.parse_args()
M
MRXLT 已提交
76

B
barrierye 已提交
77

M
MRXLT 已提交
78 79 80
class OpMaker(object):
    def __init__(self):
        self.op_dict = {
M
MRXLT 已提交
81 82 83 84 85 86
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
87
            "general_dist_kv_infer": "GeneralDistKVInferOp",
M
MRXLT 已提交
88
            "general_dist_kv": "GeneralDistKVOp"
M
MRXLT 已提交
89
        }
B
barrierye 已提交
90
        self.node_name_suffix_ = collections.defaultdict(int)
M
MRXLT 已提交
91

B
barrierye 已提交
92 93 94 95
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
M
MRXLT 已提交
96
        node = server_sdk.DAGNode()
B
barrierye 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

        node.type = self.op_dict[node_type]
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
M
MRXLT 已提交
119 120 121 122 123 124 125 126


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
127 128 129 130 131 132 133
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
M
MRXLT 已提交
134
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
135 136 137 138 139 140 141 142 143 144 145
            if len(node.dependencies) == 0:
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'.
                        format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
M
MRXLT 已提交
146 147 148 149 150 151 152 153
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


B
barrierye 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


M
MRXLT 已提交
172 173 174 175 176 177 178
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.memory_optimization = False
M
MRXLT 已提交
179
        self.ir_optimization = False
M
MRXLT 已提交
180 181 182 183 184 185
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
186
        self.cube_config_fn = "cube.conf"
M
MRXLT 已提交
187 188
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
189
        self.num_threads = 4
M
MRXLT 已提交
190 191
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
192
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
193 194
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
195
        self.use_local_bin = False
M
MRXLT 已提交
196
        self.gpuid = 0
B
barrierye 已提交
197
        self.model_config_paths = None  # for multi-model in a workflow
M
MRXLT 已提交
198 199 200 201 202 203 204

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
205 206 207 208 209 210 211 212
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

M
MRXLT 已提交
213 214 215 216 217 218 219 220 221
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
222 223 224
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

M
MRXLT 已提交
225 226 227
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
228 229 230
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

M
MRXLT 已提交
231 232 233 234
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
235

M
MRXLT 已提交
236
    def check_cuda(self):
M
MRXLT 已提交
237
        cuda_flag = False
M
MRXLT 已提交
238 239 240
        r = os.popen("ldd {} | grep cudart".format(self.bin_path))
        r = r.read().split("=")
        if len(r) >= 2 and "cudart" in r[1] and os.system(
M
MRXLT 已提交
241 242 243
                "ls /dev/ | grep nvidia > /dev/null") == 0:
            cuda_flag = True
        if not cuda_flag:
M
MRXLT 已提交
244 245 246 247
            raise SystemExit(
                "CUDA not found, please check your environment or use cpu version by \"pip install paddle_serving_server\""
            )

M
MRXLT 已提交
248 249 250
    def set_gpuid(self, gpuid=0):
        self.gpuid = gpuid

B
barrierye 已提交
251
    def _prepare_engine(self, model_config_paths, device):
M
MRXLT 已提交
252 253 254
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

B
barrierye 已提交
255 256 257 258 259 260 261 262 263 264 265 266
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            # engine.reloadable_meta = model_config_path + "/fluid_time_file"
            engine.reloadable_meta = self.workdir + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
267
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
268 269 270 271 272 273 274 275 276
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
M
MRXLT 已提交
277 278 279 280 281 282 283 284 285 286 287

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
288
        self.workdir = workdir
M
MRXLT 已提交
289 290 291 292 293
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
294 295 296 297 298
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
M
MRXLT 已提交
299 300 301 302 303 304 305 306 307
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
308 309 310 311
    def load_model_config(self, model_config_paths):
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
312
        # of multiple models are the same.
B
barrierye 已提交
313 314
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
315
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
316
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
317 318 319
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
320
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
321 322
            ]
            engine_name = None
B
barrierye 已提交
323
            for node in self.workflow_conf.workflows[0].nodes:
B
barrierye 已提交
324 325 326 327 328 329 330 331 332
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
333 334 335 336 337 338 339 340
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
M
MRXLT 已提交
341 342
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
343 344 345 346 347
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

M
MRXLT 已提交
348
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
349 350 351
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
M
MRXLT 已提交
352 353 354 355 356 357 358 359 360
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = "serving-gpu-"
361 362
        folder_name = device_version + serving_server_version
        tar_name = folder_name + ".tar.gz"
M
MRXLT 已提交
363
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
364 365 366 367
        self.server_path = os.path.join(self.module_path, folder_name)

        download_flag = "{}/{}.is_download".format(self.module_path,
                                                   folder_name)
M
MRXLT 已提交
368 369 370 371 372

        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        fcntl.flock(version_file, fcntl.LOCK_EX)

373 374 375 376 377
        if os.path.exists(download_flag):
            os.chdir(self.cur_path)
            self.bin_path = self.server_path + "/serving"
            return

M
MRXLT 已提交
378
        if not os.path.exists(self.server_path):
379 380
            os.system("touch {}/{}.is_download".format(self.module_path,
                                                       folder_name))
M
MRXLT 已提交
381 382 383 384 385
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
386 387 388
                raise SystemExit(
                    'Download failed, please check your network or permission of {}.'.
                    format(self.module_path))
M
MRXLT 已提交
389 390 391 392 393 394 395 396 397
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
398 399 400
                    raise SystemExit(
                        'Decompressing failed, please check your permission of {} or disk space left.'.
                        format(self.module_path))
M
MRXLT 已提交
401 402
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
403
        #release lock
B
barrierye 已提交
404
        version_file.close()
M
MRXLT 已提交
405 406 407 408 409 410 411 412 413 414 415
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

M
MRXLT 已提交
416
        if not self.port_is_available(port):
M
MRXLT 已提交
417 418
            raise SystemExit("Prot {} is already used".format(port))

G
guru4elephant 已提交
419
        self.set_port(port)
M
MRXLT 已提交
420
        self._prepare_resource(workdir)
B
barrierye 已提交
421
        self._prepare_engine(self.model_config_paths, device)
M
MRXLT 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
435
    def port_is_available(self, port):
M
MRXLT 已提交
436 437
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
438
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
439 440 441 442 443
        if result != 0:
            return True
        else:
            return False

M
MRXLT 已提交
444 445 446
    def run_server(self):
        # just run server with system command
        # currently we do not load cube
M
MRXLT 已提交
447
        self.check_local_bin()
M
MRXLT 已提交
448 449
        if not self.use_local_bin:
            self.download_bin()
B
fix bug  
barrierye 已提交
450 451 452
            # wait for other process to download server bin
            while not os.path.exists(self.server_path):
                time.sleep(1)
M
MRXLT 已提交
453 454
        else:
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
455
        self.check_cuda()
M
MRXLT 已提交
456 457 458 459 460 461 462 463 464 465 466
        command = "{} " \
                  "-enable_model_toolkit " \
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
467 468
                  "-workflow_file {} " \
                  "-bthread_concurrency {} " \
M
MRXLT 已提交
469 470
                  "-gpuid {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
471 472 473 474 475 476 477 478 479 480
                      self.bin_path,
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
                      self.workdir,
M
MRXLT 已提交
481 482
                      self.workflow_fn,
                      self.num_threads,
M
MRXLT 已提交
483 484
                      self.gpuid,
                      self.max_body_size)
M
MRXLT 已提交
485 486
        print("Going to Run Comand")
        print(command)
487

M
MRXLT 已提交
488
        os.system(command)
B
barrierye 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


class MultiLangServerService(
        multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelService):
    def __init__(self, model_config_path, endpoints):
        from paddle_serving_client import Client
        self._parse_model_config(model_config_path)
        self.bclient_ = Client()
        self.bclient_.load_client_config(
            "{}/serving_server_conf.prototxt".format(model_config_path))
        self.bclient_.connect(endpoints)

    def _parse_model_config(self, model_config_path):
        model_conf = m_config.GeneralModelConfig()
        f = open("{}/serving_server_conf.prototxt".format(model_config_path),
                 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

    def _unpack_request(self, request):
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
B
barrierye 已提交
534
        is_python = request.is_python
B
barrierye 已提交
535 536 537 538
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
B
barrierye 已提交
539
                var = feed_inst.tensor_array[idx]
B
barrierye 已提交
540 541
                v_type = self.feed_types_[name]
                data = None
B
barrierye 已提交
542 543 544 545 546 547 548
                if is_python:
                    if v_type == 0:
                        data = np.frombuffer(var.data, dtype="int64")
                    elif v_type == 1:
                        data = np.frombuffer(var.data, dtype="float32")
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
549
                else:
B
barrierye 已提交
550 551 552 553 554 555 556
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
B
barrierye 已提交
557 558
                feed_dict[name] = data
            feed_batch.append(feed_dict)
B
barrierye 已提交
559
        return feed_batch, fetch_names, is_python
B
barrierye 已提交
560

B
barrierye 已提交
561
    def _pack_resp_package(self, result, fetch_names, is_python, tag):
B
barrierye 已提交
562 563 564 565 566 567 568
        resp = multi_lang_general_model_service_pb2.Response()
        # Only one model is supported temporarily
        model_output = multi_lang_general_model_service_pb2.ModelOutput()
        inst = multi_lang_general_model_service_pb2.FetchInst()
        for idx, name in enumerate(fetch_names):
            tensor = multi_lang_general_model_service_pb2.Tensor()
            v_type = self.fetch_types_[name]
B
barrierye 已提交
569 570
            if is_python:
                tensor.data = result[name].tobytes()
B
barrierye 已提交
571
            else:
B
barrierye 已提交
572 573 574 575 576 577
                if v_type == 0:  # int64
                    tensor.int64_data.extend(result[name].reshape(-1).tolist())
                elif v_type == 1:  # float32
                    tensor.float_data.extend(result[name].reshape(-1).tolist())
                else:
                    raise Exception("error type.")
B
barrierye 已提交
578 579 580 581 582 583 584 585 586 587
            tensor.shape.extend(list(result[name].shape))
            if name in self.lod_tensor_set_:
                tensor.lod.extend(result["{}.lod".format(name)].tolist())
            inst.tensor_array.append(tensor)
        model_output.insts.append(inst)
        resp.outputs.append(model_output)
        resp.tag = tag
        return resp

    def inference(self, request, context):
B
barrierye 已提交
588
        feed_dict, fetch_names, is_python = self._unpack_request(request)
B
barrierye 已提交
589 590
        data, tag = self.bclient_.predict(
            feed=feed_dict, fetch=fetch_names, need_variant_tag=True)
B
barrierye 已提交
591
        return self._pack_resp_package(data, fetch_names, is_python, tag)
B
barrierye 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643


class MultiLangServer(object):
    def __init__(self, worker_num=2):
        self.bserver_ = Server()
        self.worker_num_ = worker_num

    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

    def load_model_config(self, model_config_path):
        if not isinstance(model_config_path, str):
            raise Exception(
                "MultiLangServer only supports multi-model temporarily")
        self.bserver_.load_model_config(model_config_path)
        self.model_config_path_ = model_config_path

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
                self.port_list_.append(default_port + i)
                break
        self.bserver_.prepare_server(
            workdir=workdir, port=self.port_list_[0], device=device)
        self.gport_ = port

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
        p_bserver = Process(
            target=self._launch_brpc_service, args=(self.bserver_, ))
        p_bserver.start()
        server = grpc.server(
            futures.ThreadPoolExecutor(max_workers=self.worker_num_))
        multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
            MultiLangServerService(self.model_config_path_,
                                   ["0.0.0.0:{}".format(self.port_list_[0])]),
            server)
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
        p_bserver.join()
        server.wait_for_termination()