general_reader_op.cpp 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
19
#include "core/general-server/op/general_reader_op.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
  if (var_num != model_config->_feed_type.size()) {
    VLOG(2) << "var num: " << var_num;
    VLOG(2) << "model config var num: " << model_config->_feed_type.size();
    LOG(ERROR) << "feed var number not match.";
    return -1;
  }
42 43 44

  VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  for (int i = 0; i < var_num; ++i) {
    if (model_config->_feed_type[i] !=
        req->insts(0).tensor_array(i).elem_type()) {
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
    if (model_config->_feed_shape[i].size() ==
        req->insts(0).tensor_array(i).shape_size()) {
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
        req->insts(0).tensor_array(i).shape(j);
        if (model_config->_feed_shape[i][j] !=
            req->insts(0).tensor_array(i).shape(j)) {
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
  // reade request from client
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  int batch_size = req->insts_size();
  int input_var_num = 0;

  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
  std::vector<int64_t> capacity;

  GeneralReaderOutput *res = mutable_data<GeneralReaderOutput>();
  TensorVector *in = &res->tensor_vector;

  if (!res) {
    LOG(ERROR) << "Failed get op tls reader object output";
  }
  if (batch_size <= 0) {
    res->reader_status = -1;
    return 0;
  }

  int var_num = req->insts(0).tensor_array_size();
  VLOG(2) << "var num: " << var_num;
  // read config

95
  VLOG(2) << "start to call load general model_conf op";
96 97 98
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();

99
  VLOG(2) << "get resource pointer done.";
100 101 102
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

103
  VLOG(2) << "print general model config done.";
104 105 106 107 108 109 110 111 112 113 114 115 116 117

  // check
  res->reader_status = conf_check(req, model_config);
  if (res->reader_status != 0) {
    LOG(INFO) << "model conf of server:";
    resource.print_general_model_config(model_config);
    return 0;
  }
  // package tensor

  elem_type.resize(var_num);
  elem_size.resize(var_num);
  capacity.resize(var_num);
  for (int i = 0; i < var_num; ++i) {
118
    paddle::PaddleTensor lod_tensor;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    elem_type[i] = req->insts(0).tensor_array(i).elem_type();
    VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
    if (elem_type[i] == 0) {  // int64
      elem_size[i] = sizeof(int64_t);
      lod_tensor.dtype = paddle::PaddleDType::INT64;
    } else {
      elem_size[i] = sizeof(float);
      lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
    }

    if (req->insts(0).tensor_array(i).shape(0) == -1) {
      lod_tensor.lod.resize(1);
      lod_tensor.lod[0].push_back(0);
      VLOG(2) << "var[" << i << "] is lod_tensor";
    } else {
      lod_tensor.shape.push_back(batch_size);
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "shape for var[" << i << "]: " << dim;
        capacity[i] *= dim;
        lod_tensor.shape.push_back(dim);
      }
      VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
    }
144
    lod_tensor.name = model_config->_feed_name[i];
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    in->push_back(lod_tensor);
  }

  for (int i = 0; i < var_num; ++i) {
    if (in->at(i).lod.size() == 1) {
      for (int j = 0; j < batch_size; ++j) {
        const Tensor &tensor = req->insts(j).tensor_array(i);
        int data_len = tensor.data_size();
        VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size();
        int cur_len = in->at(i).lod[0].back();
        VLOG(2) << "current len: " << cur_len;
        in->at(i).lod[0].push_back(cur_len + data_len);
        VLOG(2) << "new len: " << cur_len + data_len;
      }
      in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
      in->at(i).shape = {in->at(i).lod[0].back(), 1};
      VLOG(2) << "var[" << i
              << "] is lod_tensor and len=" << in->at(i).lod[0].back();
    } else {
      in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
      VLOG(2) << "var[" << i
              << "] is tensor and capacity=" << batch_size * capacity[i];
    }
  }

  for (int i = 0; i < var_num; ++i) {
    if (elem_type[i] == 0) {
      int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
        for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
          dst_ptr[offset + k] =
              *(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
        }
        if (in->at(i).lod.size() == 1) {
          offset = in->at(i).lod[0][j + 1];
        } else {
          offset += capacity[i];
        }
      }
    } else {
      float *dst_ptr = static_cast<float *>(in->at(i).data.data());
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
        for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
          dst_ptr[offset + k] =
              *(const float *)req->insts(j).tensor_array(i).data(k).c_str();
        }
        if (in->at(i).lod.size() == 1) {
          offset = in->at(i).lod[0][j + 1];
        } else {
          offset += capacity[i];
        }
      }
    }
  }

  VLOG(2) << "read data from client success";
  // print request
  std::ostringstream oss;
  int64_t *example = reinterpret_cast<int64_t *>((*in)[0].data.data());
  for (int i = 0; i < 10; i++) {
    oss << *(example + i) << " ";
  }
  VLOG(2) << "head element of first feed var : " << oss.str();
  //
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu