web_service.py 10.0 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
B
barrierye 已提交
15

M
MRXLT 已提交
16
from flask import Flask, request, abort
M
MRXLT 已提交
17
from contextlib import closing
M
MRXLT 已提交
18
from multiprocessing import Pool, Process, Queue
M
MRXLT 已提交
19
from paddle_serving_client import Client
M
MRXLT 已提交
20
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
M
MRXLT 已提交
21
from paddle_serving_server_gpu.serve import start_multi_card
M
MRXLT 已提交
22
import socket
M
MRXLT 已提交
23 24
import sys
import numpy as np
M
MRXLT 已提交
25
import paddle_serving_server_gpu as serving
M
MRXLT 已提交
26

B
barriery 已提交
27
from paddle_serving_server_gpu import pipeline
B
barriery 已提交
28
from paddle_serving_server_gpu.pipeline import Op
B
barriery 已提交
29 30


B
barriery 已提交
31 32 33 34
class WebService(object):
    def __init__(self, name="default_service"):
        self.name = name
        # pipeline
B
barriery 已提交
35
        self._server = pipeline.PipelineServer(self.name)
M
MRXLT 已提交
36

B
barriery 已提交
37 38
        self.gpus = []  # deprecated
        self.rpc_service_list = []  # deprecated
M
MRXLT 已提交
39

B
barriery 已提交
40 41
    def get_pipeline_response(self, read_op):
        return None
B
barriery 已提交
42

B
barriery 已提交
43 44 45 46 47 48 49 50 51 52 53
    def prepare_pipeline_config(self, yaml_file):
        # build dag
        read_op = pipeline.RequestOp()
        last_op = self.get_pipeline_response(read_op)
        if not isinstance(last_op, Op):
            raise ValueError("The return value type of `get_pipeline_response` "
                             "function is not Op type, please check function "
                             "`get_pipeline_response`.")
        response_op = pipeline.ResponseOp(input_ops=[last_op])
        self._server.set_response_op(response_op)
        self._server.prepare_server(yaml_file)
B
barriery 已提交
54

B
barriery 已提交
55 56
    def run_service(self):
        self._server.run_server()
B
barriery 已提交
57 58

    def load_model_config(self, model_config):
B
barriery 已提交
59
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
60
        self.model_config = model_config
61 62 63 64 65 66 67 68 69 70 71 72 73 74
        import os
        from .proto import general_model_config_pb2 as m_config
        import google.protobuf.text_format
        if os.path.isdir(model_config):
            client_config = "{}/serving_server_conf.prototxt".format(
                model_config)
        elif os.path.isfile(path):
            client_config = model_config
        model_conf = m_config.GeneralModelConfig()
        f = open(client_config, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names = [var.alias_name for var in model_conf.fetch_var]
B
barriery 已提交
75 76

    def set_gpus(self, gpus):
B
barriery 已提交
77
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        self.gpus = [int(x) for x in gpus.split(",")]

    def default_rpc_service(self,
                            workdir="conf",
                            port=9292,
                            gpuid=0,
                            thread_num=2,
                            mem_optim=True,
                            ir_optim=False):
        device = "gpu"
        if gpuid == -1:
            device = "cpu"
        op_maker = serving.OpMaker()
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')

        op_seq_maker = OpSeqMaker()
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)

        server = Server()
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)

        server.load_model_config(self.model_config)
        if gpuid >= 0:
            server.set_gpuid(gpuid)
        server.prepare_server(workdir=workdir, port=port, device=device)
        return server

    def _launch_rpc_service(self, service_idx):
        self.rpc_service_list[service_idx].run_server()

    def port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        if result != 0:
            return True
        else:
            return False

    def prepare_server(self,
                       workdir="",
                       port=9393,
                       device="gpu",
                       gpuid=0,
                       mem_optim=True,
                       ir_optim=False):
B
barriery 已提交
131
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        self.workdir = workdir
        self.port = port
        self.device = device
        self.gpuid = gpuid
        self.port_list = []
        default_port = 12000
        for i in range(1000):
            if self.port_is_available(default_port + i):
                self.port_list.append(default_port + i)
            if len(self.port_list) > len(self.gpus):
                break

        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
                self.default_rpc_service(
                    self.workdir,
                    self.port_list[0],
                    -1,
                    thread_num=2,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim))
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
                    self.default_rpc_service(
                        "{}_{}".format(self.workdir, i),
                        self.port_list[i],
                        gpuid,
                        thread_num=2,
                        mem_optim=mem_optim,
                        ir_optim=ir_optim))

    def _launch_web_service(self):
        gpu_num = len(self.gpus)
        self.client = Client()
        self.client.load_client_config("{}/serving_server_conf.prototxt".format(
            self.model_config))
        endpoints = ""
        if gpu_num > 0:
            for i in range(gpu_num):
                endpoints += "127.0.0.1:{},".format(self.port_list[i])
        else:
            endpoints = "127.0.0.1:{}".format(self.port_list[0])
        self.client.connect([endpoints])

    def get_prediction(self, request):
        if not request.json:
            abort(400)
        if "fetch" not in request.json:
            abort(400)
        try:
184 185
            feed, fetch, is_batch = self.preprocess(request.json["feed"],
                                                    request.json["fetch"])
B
barriery 已提交
186 187 188 189
            if isinstance(feed, dict) and "fetch" in feed:
                del feed["fetch"]
            if len(feed) == 0:
                raise ValueError("empty input")
190 191
            fetch_map = self.client.predict(
                feed=feed, fetch=fetch, batch=is_batch)
B
barriery 已提交
192 193 194 195
            result = self.postprocess(
                feed=request.json["feed"], fetch=fetch, fetch_map=fetch_map)
            result = {"result": result}
        except ValueError as err:
M
MRXLT 已提交
196
            result = {"result": str(err)}
B
barriery 已提交
197 198 199
        return result

    def run_rpc_service(self):
B
barriery 已提交
200
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        server_pros = []
        for i, service in enumerate(self.rpc_service_list):
            p = Process(target=self._launch_rpc_service, args=(i, ))
            server_pros.append(p)
        for p in server_pros:
            p.start()

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_web_service()

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    # TODO: maybe change another API name: maybe run_local_predictor?
    def run_debugger_service(self, gpu=False):
B
barriery 已提交
229
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_local_predictor(gpu)

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    def _launch_local_predictor(self, gpu):
W
wangjiawei04 已提交
250 251
        from paddle_serving_app.local_predict import LocalPredictor
        self.client = LocalPredictor()
B
barriery 已提交
252
        self.client.load_model_config(
253
            "{}".format(self.model_config), use_gpu=True, gpu_id=self.gpus[0])
B
barriery 已提交
254 255

    def run_web_service(self):
B
barriery 已提交
256
        print("This API will be deprecated later. Please do not use it")
257
        self.app_instance.run(host="0.0.0.0", port=self.port, threaded=True)
B
barriery 已提交
258 259 260 261 262

    def get_app_instance(self):
        return self.app_instance

    def preprocess(self, feed=[], fetch=[]):
B
barriery 已提交
263
        print("This API will be deprecated later. Please do not use it")
264 265
        is_batch = True
        return feed, fetch, is_batch
B
barriery 已提交
266 267

    def postprocess(self, feed=[], fetch=[], fetch_map=None):
B
barriery 已提交
268
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
269
        for key in fetch_map:
B
barriery 已提交
270 271
            fetch_map[key] = fetch_map[key].tolist()
        return fetch_map