pipeline_client.py 3.5 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import grpc
import numpy as np
B
barrierye 已提交
17 18
from numpy import *
import logging
B
barrierye 已提交
19
import functools
B
barrierye 已提交
20 21 22
from .proto import pipeline_service_pb2
from .proto import pipeline_service_pb2_grpc

W
wangjiawei04 已提交
23
_LOGGER = logging.getLogger()
B
barrierye 已提交
24

B
barrierye 已提交
25 26 27 28 29

class PipelineClient(object):
    def __init__(self):
        self._channel = None

B
barrierye 已提交
30 31 32 33 34 35
    def connect(self, endpoints):
        options = [('grpc.max_receive_message_length', 512 * 1024 * 1024),
                   ('grpc.max_send_message_length', 512 * 1024 * 1024),
                   ('grpc.lb_policy_name', 'round_robin')]
        g_endpoint = 'ipv4:{}'.format(','.join(endpoints))
        self._channel = grpc.insecure_channel(g_endpoint, options=options)
B
barrierye 已提交
36 37 38
        self._stub = pipeline_service_pb2_grpc.PipelineServiceStub(
            self._channel)

B
barrierye 已提交
39
    def _pack_request_package(self, feed_dict):
B
barrierye 已提交
40 41 42
        req = pipeline_service_pb2.Request()
        for key, value in feed_dict.items():
            req.key.append(key)
B
barrierye 已提交
43 44 45 46 47 48 49 50 51
            if isinstance(value, np.ndarray):
                req.value.append(value.__repr__())
            elif isinstance(value, str):
                req.value.append(value)
            elif isinstance(value, list):
                req.value.append(np.array(value).__repr__())
            else:
                raise TypeError("only str and np.ndarray type is supported: {}".
                                format(type(value)))
B
barrierye 已提交
52 53
        return req

B
barrierye 已提交
54
    def _unpack_response_package(self, resp, fetch):
B
barrierye 已提交
55 56 57 58
        if resp.ecode != 0:
            return {"ecode": resp.ecode, "error_info": resp.error_info}
        fetch_map = {"ecode": resp.ecode}
        for idx, key in enumerate(resp.key):
W
wangjiawei04 已提交
59
            if fetch is not None and key not in fetch:
B
barrierye 已提交
60
                continue
B
barrierye 已提交
61 62
            data = resp.value[idx]
            try:
B
barrierye 已提交
63
                data = eval(data)
B
barrierye 已提交
64 65 66
            except Exception as e:
                pass
            fetch_map[key] = data
B
barrierye 已提交
67
        return fetch_map
B
barrierye 已提交
68

W
wangjiawei04 已提交
69
    def predict(self, feed_dict, fetch=None, asyn=False):
B
barrierye 已提交
70 71 72
        if not isinstance(feed_dict, dict):
            raise TypeError(
                "feed must be dict type with format: {name: value}.")
W
wangjiawei04 已提交
73
        if fetch is not None and not isinstance(fetch, list):
B
barrierye 已提交
74 75 76 77
            raise TypeError("fetch must be list type with format: [name].")
        req = self._pack_request_package(feed_dict)
        if not asyn:
            resp = self._stub.inference(req)
W
wangjiawei04 已提交
78
            return self._unpack_response_package(resp, fetch)
B
barrierye 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        else:
            call_future = self._stub.inference.future(req)
            return PipelinePredictFuture(
                call_future,
                functools.partial(
                    self._unpack_response_package, fetch=fetch))


class PipelinePredictFuture(object):
    def __init__(self, call_future, callback_func):
        self.call_future_ = call_future
        self.callback_func_ = callback_func

    def result(self):
        resp = self.call_future_.result()
        return self.callback_func_(resp)