benchmark.py 1.9 KB
Newer Older
F
felixhjh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import time
import paddle
import sys
import requests

args = benchmark_args()


def single_func(idx, resource):
    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([args.endpoint])
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.uci_housing.train(), buf_size=500),
            batch_size=1)
        start = time.time()
        for data in train_reader():
            fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"])
        end = time.time()
        return [[end - start]]
    elif args.request == "http":
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.uci_housing.train(), buf_size=500),
            batch_size=1)
        start = time.time()
        for data in train_reader():
            r = requests.post(
                'http://{}/uci/prediction'.format(args.endpoint),
                data={"x": data[0]})
        end = time.time()
        return [[end - start]]


multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)