benchmark_batch.py 2.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
M
MRXLT 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16

import sys
M
MRXLT 已提交
17 18 19
import time
import requests
from imdb_reader import IMDBDataset
M
MRXLT 已提交
20 21
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
M
MRXLT 已提交
22 23 24
from paddle_serving_client.utils import benchmark_args

args = benchmark_args()
M
MRXLT 已提交
25 26


M
MRXLT 已提交
27 28 29
def single_func(idx, resource):
    imdb_dataset = IMDBDataset()
    imdb_dataset.load_resource("./imdb.vocab")
M
MRXLT 已提交
30
    dataset = []
M
MRXLT 已提交
31
    with open("./test_data/part-0") as fin:
M
MRXLT 已提交
32
        for line in fin:
M
MRXLT 已提交
33
            dataset.append(line.strip())
M
MRXLT 已提交
34
    start = time.time()
M
MRXLT 已提交
35 36 37 38 39 40 41 42
    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([args.endpoint])
        for i in range(1000):
            if args.batch_size >= 1:
                feed_batch = []
                for bi in range(args.batch_size):
B
barrierye 已提交
43 44
                    word_ids, label = imdb_dataset.get_words_and_label(dataset[
                        bi])
M
MRXLT 已提交
45
                    feed_batch.append({"words": word_ids})
M
MRXLT 已提交
46
                result = client.predict(feed=feed_batch, fetch=["prediction"])
B
barrierye 已提交
47 48
                if result is None:
                    raise ("predict failed.")
M
MRXLT 已提交
49 50
            else:
                print("unsupport batch size {}".format(args.batch_size))
M
MRXLT 已提交
51

M
MRXLT 已提交
52
    elif args.request == "http":
B
barrierye 已提交
53 54 55 56 57 58 59 60 61 62 63 64
        #TODO: not support yet
        raise ("no batch predict for http")
        if args.batch_size >= 1:
            feed_batch = []
            for bi in range(args.batch_size):
                word_ids, label = imdb_dataset.get_words_and_label(dataset[bi])
                feed_batch.append(word_ids)
            r = requests.post(
                "http://{}/imdb/prediction".format(args.endpoint),
                data={"words": feed_batch,
                      "fetch": ["prediction"]})
            print(r)
M
MRXLT 已提交
65
    end = time.time()
M
MRXLT 已提交
66
    return [[end - start]]
M
MRXLT 已提交
67 68


M
MRXLT 已提交
69 70
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
M
MRXLT 已提交
71 72 73
avg_cost = 0
for cost in result[0]:
    avg_cost += cost
M
MRXLT 已提交
74
print("total cost {} s of each thread".format(avg_cost / args.thread))