local_service_handler.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

B
barriery 已提交
15
import os
16
import logging
B
barriery 已提交
17
import multiprocessing
18 19 20
#from paddle_serving_server_gpu import OpMaker, OpSeqMaker
#from paddle_serving_server_gpu import Server as GpuServer
#from paddle_serving_server import Server as CpuServer
B
barriery 已提交
21
from . import util
22
#from paddle_serving_app.local_predict import LocalPredictor
23 24

_LOGGER = logging.getLogger(__name__)
B
barriery 已提交
25
_workdir_name_gen = util.NameGenerator("workdir_")
26 27


W
fix bug  
wangjiawei04 已提交
28
class LocalServiceHandler(object):
29 30 31 32 33 34 35
    """
    LocalServiceHandler is the processor of the local service, contains
    three client types, brpc, grpc and local_predictor.If you use the 
    brpc or grpc, serveing startup ability is provided.If you use
    local_predictor, local predict ability is provided by paddle_serving_app.
    """

36
    def __init__(self,
B
barriery 已提交
37
                 model_config,
W
wangjiawei04 已提交
38
                 client_type='local_predictor',
B
barriery 已提交
39
                 workdir="",
40
                 thread_num=2,
41
                 device_type=-1,
42
                 devices="",
43
                 fetch_names=None,
44 45
                 mem_optim=True,
                 ir_optim=False,
46 47 48 49 50 51 52 53 54 55
                 available_port_generator=None,
                 use_profile=False):
        """
        Initialization of localservicehandler

        Args:
           model_config: model config path
           client_type: brpc, grpc and local_predictor[default]
           workdir: work directory
           thread_num: number of threads, concurrent quantity.
56 57
           device_type: support multiple devices. -1=Not set, determined by
               `devices`. 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
58 59 60 61 62 63 64 65 66 67 68
           devices: gpu id list[gpu], "" default[cpu]
           fetch_names: get fetch names out of LocalServiceHandler in 
               local_predictor mode. fetch_names_ is compatible for Client().
           mem_optim: use memory/graphics memory optimization, True default.
           ir_optim: use calculation chart optimization, False default.
           available_port_generator: generate available ports
           use_profile: use profiling, False default.

        Returns:
           None
        """
69
        if available_port_generator is None:
B
barriery 已提交
70
            available_port_generator = util.GetAvailablePortGenerator()
71

B
barriery 已提交
72
        self._model_config = model_config
73
        self._port_list = []
74 75 76 77 78 79 80 81 82 83 84 85
        self._device_name = "cpu"
        self._use_gpu = False
        self._use_trt = False
        self._use_lite = False
        self._use_xpu = False

        if device_type == -1:
            # device_type is not set, determined by `devices`, 
            if devices == "":
                # CPU
                self._device_name = "cpu"
                devices = [-1]
Z
zhangjun 已提交
86
            else:
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                # GPU
                self._device_name = "gpu"
                self._use_gpu = True
                devices = [int(x) for x in devices.split(",")]

        elif device_type == 0:
            # CPU
            self._device_name = "cpu"
            devices = [-1]
        elif device_type == 1:
            # GPU
            self._device_name = "gpu"
            self._use_gpu = True
            devices = [int(x) for x in devices.split(",")]
        elif device_type == 2:
            # Nvidia Tensor RT
            self._device_name = "gpu"
            self._use_gpu = True
105
            devices = [int(x) for x in devices.split(",")]
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            self._use_trt = True
        elif device_type == 3:
            # ARM CPU
            self._device_name = "arm"
            devices = [-1]
            self._use_lite = True
        elif device_type == 4:
            # Kunlun XPU
            self._device_name = "arm"
            devices = [int(x) for x in devices.split(",")]
            self._use_lite = True
            self._use_xpu = True
        else:
            _LOGGER.error(
                "LocalServiceHandler initialization fail. device_type={}"
                .format(device_type))

        if client_type == "brpc" or client_type == "grpc":
124 125
            for _ in devices:
                self._port_list.append(available_port_generator.next())
126 127 128
            _LOGGER.info("Create ports for devices:{}. Port:{}"
                         .format(devices, self._port_list))

129
        self._client_type = client_type
130 131 132 133 134
        self._workdir = workdir
        self._devices = devices
        self._thread_num = thread_num
        self._mem_optim = mem_optim
        self._ir_optim = ir_optim
135
        self._local_predictor_client = None
136 137
        self._rpc_service_list = []
        self._server_pros = []
138
        self._use_profile = use_profile
139 140 141 142 143 144 145 146 147 148 149
        self._fetch_names = fetch_names

        _LOGGER.info(
            "Models({}) will be launched by device {}. use_gpu:{}, "
            "use_trt:{}, use_lite:{}, use_xpu:{}, device_type:{}, devices:{}, "
            "mem_optim:{}, ir_optim:{}, use_profile:{}, thread_num:{}, "
            "client_type:{}, fetch_names:{}".format(
                model_config, self._device_name, self._use_gpu, self._use_trt,
                self._use_lite, self._use_xpu, device_type, self._devices,
                self._mem_optim, self._ir_optim, self._use_profile,
                self._thread_num, self._client_type, self._fetch_names))
150 151

    def get_fetch_list(self):
152
        return self._fetch_names
153 154 155 156

    def get_port_list(self):
        return self._port_list

157
    def get_client(self, concurrency_idx):
158 159 160
        """
        Function get_client is only used for local predictor case, creates one
        LocalPredictor object, and initializes the paddle predictor by function
161
        load_model_config.The concurrency_idx is used to select running devices.  
162 163

        Args:
164
            concurrency_idx: process/thread index
165 166 167 168

        Returns:
            _local_predictor_client
        """
169 170 171 172 173 174 175 176

        #checking the legality of concurrency_idx.
        device_num = len(self._devices)
        if device_num <= 0:
            _LOGGER.error("device_num must be not greater than 0. devices({})".
                          format(self._devices))
            raise ValueError("The number of self._devices error")

T
TeslaZhao 已提交
177
        if concurrency_idx < 0:
178 179 180 181 182 183
            _LOGGER.error("concurrency_idx({}) must be one positive number".
                          format(concurrency_idx))
            concurrency_idx = 0
        elif concurrency_idx >= device_num:
            concurrency_idx = concurrency_idx % device_num

T
TeslaZhao 已提交
184 185
        _LOGGER.info("GET_CLIENT : concurrency_idx={}, device_num={}".format(
            concurrency_idx, device_num))
186 187 188
        from paddle_serving_app.local_predict import LocalPredictor
        if self._local_predictor_client is None:
            self._local_predictor_client = LocalPredictor()
189

190 191
            self._local_predictor_client.load_model_config(
                model_path=self._model_config,
192
                use_gpu=self._use_gpu,
193
                gpu_id=self._devices[concurrency_idx],
194 195 196 197
                use_profile=self._use_profile,
                thread_num=self._thread_num,
                mem_optim=self._mem_optim,
                ir_optim=self._ir_optim,
Z
zhangjun 已提交
198
                use_trt=self._use_trt,
199
                use_lite=self._use_lite,
Z
zhangjun 已提交
200
                use_xpu=self._use_xpu)
201
        return self._local_predictor_client
W
wangjiawei04 已提交
202

B
barriery 已提交
203 204
    def get_client_config(self):
        return os.path.join(self._model_config, "serving_server_conf.prototxt")
205 206 207

    def _prepare_one_server(self, workdir, port, gpuid, thread_num, mem_optim,
                            ir_optim):
208
        """
209
        According to self._device_name, generating one Cpu/Gpu/Arm Server, and
210 211 212 213 214 215 216 217 218 219 220 221 222
        setting the model config amd startup params.

        Args:
            workdir: work directory
            port: network port
            gpuid: gpu id
            thread_num: thread num
            mem_optim: use memory/graphics memory optimization
            ir_optim: use calculation chart optimization

        Returns:
            server: CpuServer/GpuServer
        """
223
        if self._device_name == "cpu":
224 225 226 227 228 229 230 231 232 233 234 235 236
            from paddle_serving_server import OpMaker, OpSeqMaker, Server
            op_maker = OpMaker()
            read_op = op_maker.create('general_reader')
            general_infer_op = op_maker.create('general_infer')
            general_response_op = op_maker.create('general_response')

            op_seq_maker = OpSeqMaker()
            op_seq_maker.add_op(read_op)
            op_seq_maker.add_op(general_infer_op)
            op_seq_maker.add_op(general_response_op)

            server = Server()
        else:
Z
zhangjun 已提交
237
            #gpu or arm
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
            op_maker = OpMaker()
            read_op = op_maker.create('general_reader')
            general_infer_op = op_maker.create('general_infer')
            general_response_op = op_maker.create('general_response')

            op_seq_maker = OpSeqMaker()
            op_seq_maker.add_op(read_op)
            op_seq_maker.add_op(general_infer_op)
            op_seq_maker.add_op(general_response_op)

            server = Server()
            if gpuid >= 0:
                server.set_gpuid(gpuid)

253 254 255 256 257 258
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)

        server.load_model_config(self._model_config)
259
        server.prepare_server(
260 261 262
            workdir=workdir, port=port, device=self._device_name)
        if self._fetch_names is None:
            self._fetch_names = server.get_fetch_list()
263 264 265
        return server

    def _start_one_server(self, service_idx):
266 267 268 269 270 271 272 273 274
        """
        Start one server
     
        Args:
            service_idx: server index
 
        Returns:
            None
        """
275 276 277
        self._rpc_service_list[service_idx].run_server()

    def prepare_server(self):
278 279 280
        """
        Prepare all servers to be started, and append them into list. 
        """
281
        for i, device_id in enumerate(self._devices):
B
barriery 已提交
282
            if self._workdir != "":
283 284 285 286 287 288 289 290 291 292 293 294 295
                workdir = "{}_{}".format(self._workdir, i)
            else:
                workdir = _workdir_name_gen.next()
            self._rpc_service_list.append(
                self._prepare_one_server(
                    workdir,
                    self._port_list[i],
                    device_id,
                    thread_num=self._thread_num,
                    mem_optim=self._mem_optim,
                    ir_optim=self._ir_optim))

    def start_server(self):
296 297 298
        """
        Start multiple processes and start one server in each process
        """
299
        for i, _ in enumerate(self._rpc_service_list):
B
barriery 已提交
300 301 302
            p = multiprocessing.Process(
                target=self._start_one_server, args=(i, ))
            p.daemon = True
303 304 305
            self._server_pros.append(p)
        for p in self._server_pros:
            p.start()