operator.py 62.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18 19 20 21 22
import threading
import multiprocessing
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
B
barrierye 已提交
29 30 31 32 33 34
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
35

B
barrierye 已提交
36
from .proto import pipeline_service_pb2
T
TeslaZhao 已提交
37
from .channel import (ThreadChannel, ProcessChannel, ChannelDataErrcode,
B
bug fix  
barriery 已提交
38
                      ChannelData, ChannelDataType, ChannelStopError,
T
TeslaZhao 已提交
39
                      ChannelTimeoutError, ProductErrCode)
B
barrierye 已提交
40
from .util import NameGenerator
B
barriery 已提交
41
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
42
from . import local_service_handler
43

44
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
45 46
_op_name_gen = NameGenerator("Op")

D
dongdaxiang 已提交
47 48 49

class Op(object):
    def __init__(self,
B
barrierye 已提交
50
                 name=None,
D
dongdaxiang 已提交
51
                 input_ops=[],
B
barriery 已提交
52 53
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
54
                 client_config=None,
W
wangjiawei04 已提交
55
                 client_type=None,
B
barriery 已提交
56 57
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
58
                 retry=0,
B
barriery 已提交
59
                 batch_size=None,
60
                 auto_batching_timeout=None,
W
wangjiawei04 已提交
61
                 local_service_handler=None):
B
barriery 已提交
62
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
63
        if name is None:
B
barrierye 已提交
64
            name = _op_name_gen.next()
65
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
66
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
67
        self.set_input_ops(input_ops)
B
barrierye 已提交
68

W
wangjiawei04 已提交
69
        self._local_service_handler = local_service_handler
B
barriery 已提交
70
        self._server_endpoints = server_endpoints
B
barrierye 已提交
71
        self._fetch_names = fetch_list
B
barriery 已提交
72
        self._client_config = client_config
W
wangjiawei04 已提交
73
        self.client_type = client_type
B
barriery 已提交
74
        self._timeout = timeout
75
        self._retry = max(1, retry)
B
barriery 已提交
76 77 78
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

79 80
        self._input = None
        self._outputs = []
B
barrierye 已提交
81

B
barriery 已提交
82 83 84 85 86 87 88 89 90
        self._server_use_profile = False
        self._tracer = None

        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

B
barriery 已提交
91
    def init_from_dict(self, conf):
92 93 94 95 96 97 98 99 100 101 102 103
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
            None
        """
B
barriery 已提交
104
        # init op
B
barriery 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")

        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
            _LOGGER.warning(
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

134 135 136
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
137
        self.device_type = -1
138 139 140
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
B
barriery 已提交
141 142 143 144 145 146
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
147
                self.client_type = conf["client_type"]
148
            else:
W
wangjiawei04 已提交
149
                if self._local_service_handler is None:
B
barriery 已提交
150
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
151 152
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
153
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
154
                    self.client_type = local_service_conf.get("client_type")
155 156
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
157
                    self.device_type = local_service_conf.get("device_type")
158 159 160 161 162
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
                    if self.model_config is None:
B
barriery 已提交
163 164 165 166
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
167 168
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
169
                                model_config=self.model_config,
W
wangjiawei04 已提交
170
                                client_type=self.client_type,
171 172
                                workdir=self.workdir,
                                thread_num=self.thread_num,
173
                                device_type=self.device_type,
174 175 176
                                devices=self.devices,
                                mem_optim=self.mem_optim,
                                ir_optim=self.ir_optim)
W
wangjiawei04 已提交
177 178 179 180 181 182 183 184 185 186 187 188
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
189
                            service_handler = local_service_handler.LocalServiceHandler(
190
                                model_config=self.model_config,
W
wangjiawei04 已提交
191
                                client_type=self.client_type,
192 193
                                workdir=self.workdir,
                                thread_num=self.thread_num,
194
                                device_type=self.device_type,
195
                                devices=self.devices,
196 197 198
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
                                ir_optim=self.ir_optim)
W
wangjiawei04 已提交
199 200 201 202
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
203
                else:
B
barriery 已提交
204
                    self.with_serving = True
W
wangjiawei04 已提交
205
                    self._local_service_handler.prepare_server(
B
barriery 已提交
206
                    )  # get fetch_list
W
wangjiawei04 已提交
207
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
208 209 210
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
211
                    if self._client_config is None:
W
wangjiawei04 已提交
212
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
213
                        )
B
barriery 已提交
214
                    if self._fetch_names is None:
W
wangjiawei04 已提交
215
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
216
                        )
B
barriery 已提交
217 218
        else:
            self.with_serving = True
B
barriery 已提交
219

220 221 222 223 224 225 226 227 228 229 230
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
231
                              ", ".join([op.name for op in self._input_ops
232 233 234 235
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
236

237
    def launch_local_rpc_service(self):
238 239 240 241 242 243 244 245 246
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
247
        if self._local_service_handler is None:
B
barriery 已提交
248 249
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
250
                          " service: local_service_handler is None."))
B
barriery 已提交
251
            return
W
wangjiawei04 已提交
252
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
253 254 255
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
256
        self._local_service_handler.start_server()
B
barriery 已提交
257
        _LOGGER.info("Op({}) use local rpc service at port: {}"
258 259
                     .format(self.name, port))

B
barriery 已提交
260
    def use_default_auto_batching_config(self):
261 262 263 264 265 266 267 268 269
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
270
        if self._batch_size != 1:
271 272
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
273 274
            self._batch_size = 1
        if self._auto_batching_timeout != None:
275
            _LOGGER.warning(
B
barriery 已提交
276 277
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
278
            self._auto_batching_timeout = None
B
barriery 已提交
279

B
barrierye 已提交
280
    def use_profiler(self, use_profile):
B
barrierye 已提交
281
        self._server_use_profile = use_profile
282

B
barriery 已提交
283 284 285
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
286
    def init_client(self, client_config, server_endpoints):
287 288 289 290 291 292 293 294 295 296 297 298
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
299
        if self.with_serving == False:
B
barriery 已提交
300
            _LOGGER.info("Op({}) has no client (and it also do not "
301
                         "run the process function)".format(self.name))
B
barrierye 已提交
302
            return None
W
wangjiawei04 已提交
303
        if self.client_type == 'brpc':
B
barrierye 已提交
304 305
            client = Client()
            client.load_client_config(client_config)
W
wangjiawei04 已提交
306
        elif self.client_type == 'grpc':
B
barrierye 已提交
307
            client = MultiLangClient()
W
wangjiawei04 已提交
308 309 310 311
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
312
        else:
B
barriery 已提交
313
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
314
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
315 316 317
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
318 319
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
B
barrierye 已提交
320
        return client
321 322 323 324 325

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
326 327 328 329 330 331 332 333 334 335
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
336 337 338 339 340
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
341
                _LOGGER.critical(
B
barriery 已提交
342 343
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
344
                os._exit(-1)
345
            self._input_ops.append(op)
D
dongdaxiang 已提交
346

347
    def add_input_channel(self, channel):
348 349 350 351
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
352
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
353
            _LOGGER.critical(
B
barriery 已提交
354 355 356
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
357
            os._exit(-1)
358 359
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
360

361
    def clean_input_channel(self):
B
barrierye 已提交
362 363 364 365
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
366

367
    def add_output_channel(self, channel):
368 369 370 371 372 373 374 375 376 377
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
378
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
379
            _LOGGER.critical(
B
barriery 已提交
380 381
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
382
            os._exit(-1)
383 384
        channel.add_producer(self.name)
        self._outputs.append(channel)
D
dongdaxiang 已提交
385

386
    def clean_output_channels(self):
B
barrierye 已提交
387 388 389 390 391
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

392
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
393 394 395 396 397 398
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
399 400
            data_id: inner unique id, 0 default
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
401 402 403 404 405 406 407 408

        Return:
            input_dict: data for process stage
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
409
        # multiple previous Op
B
barrierye 已提交
410
        if len(input_dicts) != 1:
411 412
            _LOGGER.critical(
                self._log(
B
barriery 已提交
413 414
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
415
            os._exit(-1)
D
dongdaxiang 已提交
416

B
barrierye 已提交
417
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
418
        return input_dict, False, None, ""
B
barrierye 已提交
419

420
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
421 422 423 424 425
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
426 427
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
428 429 430 431

        Returns:
            call_result: predict result
        """
B
bug fix  
barriery 已提交
432
        err, err_info = ChannelData.check_batch_npdata(feed_batch)
B
barrierye 已提交
433
        if err != 0:
434
            _LOGGER.critical(
B
barriery 已提交
435 436
                self._log("Failed to run process: {}. Please override "
                          "preprocess func.".format(err_info)))
437
            os._exit(-1)
W
wangjiawei04 已提交
438 439 440
        if self.client_type == "local_predictor":
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
441
                fetch=self._fetch_names,
W
wangjiawei04 已提交
442 443 444 445 446
                batch=True,
                log_id=typical_logid)
        else:
            call_result = self.client.predict(
                feed=feed_batch,
W
wangjiawei04 已提交
447
                fetch=self._fetch_names,
W
wangjiawei04 已提交
448 449
                batch=True,
                log_id=typical_logid)
B
barriery 已提交
450 451 452 453
        if isinstance(self.client, MultiLangClient):
            if call_result is None or call_result["serving_status_code"] != 0:
                return None
            call_result.pop("serving_status_code")
454 455
        return call_result

456
    def postprocess(self, input_dict, fetch_dict, log_id=0):
T
TeslaZhao 已提交
457 458 459 460 461
        """
        In postprocess stage, assemble data for next op or output.
        Args:
            input_dict: data returned in preprocess stage.
            fetch_dict: data returned in process stage.
462
            log_id: logid, 0 default
T
TeslaZhao 已提交
463 464 465 466 467 468 469 470

        Returns: 
            fetch_dict: return fetch_dict default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
        return fetch_dict, None, ""
D
dongdaxiang 已提交
471

B
barrierye 已提交
472
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
486
        data_id, error_channeldata = None, None
B
barrierye 已提交
487
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
488 489 490 491
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
492
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
493
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
494 495

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
496
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
497 498 499
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
500
            if client_need_profile:
B
barrierye 已提交
501
                profile_set |= data.profile_data_set
B
barrierye 已提交
502
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
503
                profile_set, log_id)
B
barrierye 已提交
504 505 506 507 508

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
509
                                 profile_str=None,
B
barrierye 已提交
510
                                 client_need_profile=False,
B
barrierye 已提交
511
                                 profile_set=None):
T
TeslaZhao 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
526 527
        if name is None:
            name = self.name
B
barrierye 已提交
528

B
barriery 已提交
529
        # add profile into channeldata
B
barrierye 已提交
530
        if client_need_profile and profile_set is not None:
B
barriery 已提交
531 532
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
533
            data.add_profile(profile_set)
B
barrierye 已提交
534

B
barriery 已提交
535 536 537
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
538
    def start_with_process(self):
539 540 541 542 543 544 545 546 547 548
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
549 550 551
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
552
        process = []
B
barrierye 已提交
553
        for concurrency_idx in range(self.concurrency):
554 555
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
556
                args=(concurrency_idx, self._get_input_channel(),
557 558
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
559 560
                      self.device_type, self.devices, self.mem_optim,
                      self.ir_optim))
B
barriery 已提交
561
            p.daemon = True
562
            p.start()
W
wangjiawei04 已提交
563 564
            process.append(p)
        return process
565

W
wangjiawei04 已提交
566
    def start_with_thread(self):
567 568 569 570 571 572 573 574 575 576
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
577 578 579
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
580 581 582 583

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
584
            self.local_predictor = self._local_service_handler.get_client(0)
585

586
        threads = []
B
barrierye 已提交
587
        for concurrency_idx in range(self.concurrency):
588 589
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
590
                args=(concurrency_idx, self._get_input_channel(),
591 592
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
593 594
                      self.device_type, self.devices, self.mem_optim,
                      self.ir_optim))
B
barriery 已提交
595 596 597
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
598 599 600 601
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
602
    def init_op(self):
B
barrierye 已提交
603 604
        pass

T
TeslaZhao 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
619
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
620 621
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
622
        skip_process_dict = {}
623 624
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
625 626 627
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
628
            try:
T
TeslaZhao 已提交
629 630 631 632 633
                preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                    parsed_data, data_id, logid_dict.get(data_id))
                # Set skip_process_dict
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
634 635
            except TypeError as e:
                # Error type in channeldata.datatype
T
TeslaZhao 已提交
636 637
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
638
                _LOGGER.error(error_info, exc_info=True)
639
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
640
                    error_code=ChannelDataErrcode.TYPE_ERROR.value,
641
                    error_info=error_info,
T
TeslaZhao 已提交
642 643
                    data_id=data_id,
                    log_id=log_id)
644
            except Exception as e:
T
TeslaZhao 已提交
645 646
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
647
                _LOGGER.error(error_info, exc_info=True)
648
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
649
                    error_code=ChannelDataErrcode.UNKNOW.value,
650
                    error_info=error_info,
T
TeslaZhao 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                error_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

664 665 666 667
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
668
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
685
        _LOGGER.debug("{} Running process".format(op_info_prefix))
686 687
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
688 689
        ### if (batch_num == 1 && skip == True) ,then skip the process stage.
        is_skip_process = False
T
TeslaZhao 已提交
690
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
691 692 693 694 695 696 697
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
            _LOGGER.info("(data_id={} log_id={}) skip process stage".format(
                data_ids[0], logid_dict.get(data_ids[0])))

        if self.with_serving is True and is_skip_process is False:
            # use typical_logid to mark batch data
B
barriery 已提交
698 699 700 701
            typical_logid = data_ids[0]
            if len(data_ids) != 1:
                for data_id in data_ids:
                    _LOGGER.info(
T
TeslaZhao 已提交
702
                        "(data_id={} logid={}) {} During access to PaddleServingService,"
703 704
                        " we selected logid={} (from batch: {}) as a "
                        "representative for logging.".format(
T
TeslaZhao 已提交
705 706 707
                            data_id,
                            logid_dict.get(data_id), op_info_prefix,
                            typical_logid, data_ids))
B
barrierye 已提交
708 709 710 711

            # combine samples to batch
            one_input = preped_data_dict[data_ids[0]]
            feed_batch = []
712
            feed_dict = {}
B
barrierye 已提交
713
            input_offset = None
714 715 716
            cur_offset = 0
            input_offset_dict = {}

B
barrierye 已提交
717 718
            if isinstance(one_input, dict):
                # sample input
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
                if len(data_ids) == 1:
                    feed_batch = [
                        preped_data_dict[data_id] for data_id in data_ids
                    ]
                else:
                    for data_id in data_ids:
                        for key, val in preped_data_dict[data_id].items():
                            has_val = feed_dict.get(key)
                            if has_val is None:
                                feed_dict[key] = val
                                continue
                            # merge 2 np.arrray
                            if isinstance(val, np.ndarray):
                                feed_dict[key] = np.append(
                                    feed_dict[key], val, axis=0)
                    feed_batch.append(feed_dict)

                for data_id in data_ids:
                    start = cur_offset
                    for key, val in preped_data_dict[data_id].items():
                        if isinstance(val, (list, np.ndarray)):
                            cur_offset += len(val)
                        else:
                            cur_offset += 1
                        break
                    input_offset_dict[data_id] = [start, cur_offset]
B
barrierye 已提交
745 746 747 748 749 750 751 752 753 754
            elif isinstance(one_input, list):
                # batch input
                input_offset = [0]
                for data_id in data_ids:
                    batch_input = preped_data_dict[data_id]
                    offset = input_offset[-1] + len(batch_input)
                    feed_batch += batch_input
                    input_offset.append(offset)
            else:
                _LOGGER.critical(
T
TeslaZhao 已提交
755 756 757
                    "(data_id={} log_id={}){} Failed to process: expect input type is dict(sample"
                    " input) or list(batch input), but get {}".format(data_ids[
                        0], typical_logid, op_info_prefix, type(one_input)))
B
barrierye 已提交
758 759
                os._exit(-1)

B
bug fix  
barriery 已提交
760
            midped_batch = None
T
TeslaZhao 已提交
761
            error_code = ChannelDataErrcode.OK.value
762 763
            if self._timeout <= 0:
                try:
B
barriery 已提交
764
                    midped_batch = self.process(feed_batch, typical_logid)
765
                except Exception as e:
T
TeslaZhao 已提交
766 767 768
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                        data_ids[0], typical_logid, op_info_prefix, data_ids, e)
B
barriery 已提交
769
                    _LOGGER.error(error_info, exc_info=True)
770
            else:
T
TeslaZhao 已提交
771
                # retry N times configed in yaml files.
772 773
                for i in range(self._retry):
                    try:
T
TeslaZhao 已提交
774
                        # time out for each process
775
                        midped_batch = func_timeout.func_timeout(
B
barriery 已提交
776 777 778
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
779 780
                    except func_timeout.FunctionTimedOut as e:
                        if i + 1 >= self._retry:
T
TeslaZhao 已提交
781 782
                            error_code = ChannelDataErrcode.TIMEOUT.value
                            error_info = "(log_id={}) {} Failed to process(batch: {}): " \
B
barriery 已提交
783
                                    "exceeded retry count.".format(
B
barriery 已提交
784
                                            typical_logid, op_info_prefix, data_ids)
785 786
                            _LOGGER.error(error_info)
                        else:
787
                            _LOGGER.warning(
T
TeslaZhao 已提交
788
                                "(log_id={}) {} Failed to process(batch: {}): timeout,"
B
barriery 已提交
789 790 791
                                " and retrying({}/{})...".format(
                                    typical_logid, op_info_prefix, data_ids, i +
                                    1, self._retry))
792
                    except Exception as e:
T
TeslaZhao 已提交
793 794
                        error_code = ChannelDataErrcode.UNKNOW.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
B
barriery 已提交
795
                            typical_logid, op_info_prefix, data_ids, e)
B
barriery 已提交
796
                        _LOGGER.error(error_info, exc_info=True)
797 798 799
                        break
                    else:
                        break
T
TeslaZhao 已提交
800
            if error_code != ChannelDataErrcode.OK.value:
801 802
                for data_id in data_ids:
                    err_channeldata_dict[data_id] = ChannelData(
T
TeslaZhao 已提交
803 804 805 806
                        error_code=error_code,
                        error_info=error_info,
                        data_id=data_id,
                        log_id=logid_dict.get(data_id))
807
            elif midped_batch is None:
808
                # op client return None
T
TeslaZhao 已提交
809
                error_info = "(log_id={}) {} Failed to predict, please check if " \
B
barriery 已提交
810 811 812
                        "PaddleServingService is working properly.".format(
                                typical_logid, op_info_prefix)
                _LOGGER.error(error_info)
813 814
                for data_id in data_ids:
                    err_channeldata_dict[data_id] = ChannelData(
T
TeslaZhao 已提交
815
                        error_code=ChannelDataErrcode.CLIENT_ERROR.value,
B
barriery 已提交
816
                        error_info=error_info,
T
TeslaZhao 已提交
817 818
                        data_id=data_id,
                        log_id=logid_dict.get(data_id))
819 820
            else:
                # transform np format to dict format
B
barrierye 已提交
821 822 823 824 825 826
                var_names = midped_batch.keys()
                lod_var_names = set()
                lod_offset_names = set()
                for name in var_names:
                    lod_offset_name = "{}.lod".format(name)
                    if lod_offset_name in var_names:
827 828 829 830
                        _LOGGER.debug(
                            "(log_id={}) {} {} is LodTensor. lod_offset_name:{}".
                            format(typical_logid, op_info_prefix, name,
                                   lod_offset_name))
B
barrierye 已提交
831 832
                        lod_var_names.add(name)
                        lod_offset_names.add(lod_offset_name)
B
barriery 已提交
833

834
                for idx, data_id in enumerate(data_ids):
B
barrierye 已提交
835
                    midped_data_dict[data_id] = {}
B
barriery 已提交
836

B
barrierye 已提交
837 838 839 840 841 842
                for name, value in midped_batch.items():
                    if name in lod_offset_names:
                        continue
                    if name in lod_var_names:
                        # lodtensor
                        lod_offset_name = "{}.lod".format(name)
B
barrierye 已提交
843
                        lod_offset = midped_batch[lod_offset_name]
B
barrierye 已提交
844
                        for idx, data_id in enumerate(data_ids):
845 846
                            data_offset_left = input_offset_dict[data_id][0]
                            data_offset_right = input_offset_dict[data_id][1]
B
barrierye 已提交
847 848
                            lod_offset_left = lod_offset[data_offset_left]
                            lod_offset_right = lod_offset[data_offset_right]
B
barriery 已提交
849 850
                            midped_data_dict[data_id][name] = value[
                                lod_offset_left:lod_offset_right]
B
barrierye 已提交
851 852
                            midped_data_dict[data_id][lod_offset_name] = \
                                    lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
B
barrierye 已提交
853
                    else:
B
barrierye 已提交
854
                        # normal tensor
B
barrierye 已提交
855
                        for idx, data_id in enumerate(data_ids):
856 857
                            left = input_offset_dict[data_id][0]
                            right = input_offset_dict[data_id][1]
B
barrierye 已提交
858
                            midped_data_dict[data_id][name] = value[left:right]
859
        else:
860
            midped_data_dict = preped_data_dict
B
barriery 已提交
861
        _LOGGER.debug("{} Succ process".format(op_info_prefix))
862 863
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
864
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
879
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
880 881
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
B
bug fix  
barriery 已提交
882
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
883
            log_id = logid_dict.get(data_id)
884
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
885
            prod_errcode, prod_errinfo = None, None
886
            try:
T
TeslaZhao 已提交
887 888 889
                postped_data, prod_errcode, prod_errinfo = self.postprocess(
                    parsed_data_dict[data_id], midped_data,
                    logid_dict.get(data_id))
890
            except Exception as e:
T
TeslaZhao 已提交
891 892
                error_info = "(data_id={} log_id={}) {} Failed to postprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
893
                _LOGGER.error(error_info, exc_info=True)
894
                err_channeldata = ChannelData(
T
TeslaZhao 已提交
895
                    error_code=ChannelDataErrcode.UNKNOW.value,
896
                    error_info=error_info,
T
TeslaZhao 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                err_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

910 911 912 913 914
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue
            else:
                if not isinstance(postped_data, dict):
T
TeslaZhao 已提交
915
                    error_info = "(log_id={} log_id={}) {} Failed to postprocess: " \
B
barriery 已提交
916 917
                            "output of postprocess funticon must be " \
                            "dict type, but get {}".format(
T
TeslaZhao 已提交
918
                                data_id, log_id, op_info_prefix,
B
barriery 已提交
919
                                type(postped_data))
920 921
                    _LOGGER.error(error_info)
                    err_channeldata = ChannelData(
T
TeslaZhao 已提交
922
                        error_code=ChannelDataErrcode.UNKNOW.value,
923
                        error_info=error_info,
T
TeslaZhao 已提交
924 925
                        data_id=data_id,
                        log_id=log_id)
926 927 928 929 930 931 932 933 934
                    err_channeldata_dict[data_id] = err_channeldata
                    continue

                output_data = None
                err, _ = ChannelData.check_npdata(postped_data)
                if err == 0:
                    output_data = ChannelData(
                        ChannelDataType.CHANNEL_NPDATA.value,
                        npdata=postped_data,
T
TeslaZhao 已提交
935 936
                        data_id=data_id,
                        log_id=log_id)
937 938 939 940
                else:
                    output_data = ChannelData(
                        ChannelDataType.DICT.value,
                        dictdata=postped_data,
T
TeslaZhao 已提交
941 942
                        data_id=data_id,
                        log_id=log_id)
943
                postped_data_dict[data_id] = output_data
B
barriery 已提交
944
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
945
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
946 947

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
948
                                 timeout, op_info_prefix):
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
965 966 967 968 969 970 971 972 973 974 975 976
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
977 978
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
979
                                break
B
barriery 已提交
980 981
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
982 983 984
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
985 986 987
                        _LOGGER.debug(
                            "_auto_batching_generator get {} channeldata from op:{} into batch, batch_size:{}".
                            format(idx, op_name, batch_size))
B
barriery 已提交
988
                    except ChannelTimeoutError:
B
barriery 已提交
989 990
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
991
                        break
B
barriery 已提交
992 993
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
994
            yield batch
995

996
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1009
        parsed_data_dict = collections.OrderedDict()
1010 1011
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1012
        logid_dict = {}
B
bug fix  
barriery 已提交
1013
        for channeldata_dict in batch:
1014
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1015
                    client_need_profile, profile_set, log_id) = \
1016 1017 1018 1019 1020
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1021
                logid_dict[data_id] = log_id
1022 1023 1024
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1025 1026
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1027

T
TeslaZhao 已提交
1028
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1029

W
wangjiawei04 已提交
1030
    def _run(self, concurrency_idx, input_channel, output_channels,
1031
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
1032
             device_type, devices, mem_optim, ir_optim):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1050
            device_type: support multiple devices
1051 1052 1053 1054 1055 1056 1057
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
            ir_optim: use calculation chart optimization, False default. 

        Returns:
            None
        """
1058
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1059

1060
        # init ops
B
barriery 已提交
1061
        profiler = None
B
barrierye 已提交
1062
        try:
1063 1064 1065 1066 1067 1068
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1069
                    device_type=device_type,
1070 1071 1072 1073 1074 1075
                    devices=devices,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim)

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1076 1077
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1078
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1079
            profiler = self._initialize(is_thread_op, concurrency_idx)
1080

B
barrierye 已提交
1081
        except Exception as e:
B
barriery 已提交
1082
            _LOGGER.critical(
T
TeslaZhao 已提交
1083
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1084
                exc_info=True)
B
barrierye 已提交
1085
            os._exit(-1)
B
barriery 已提交
1086
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1087

B
barriery 已提交
1088
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1089 1090 1091 1092
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1093
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1094

B
barriery 已提交
1095
        start, end = None, None
B
barrierye 已提交
1096
        trace_que = collections.deque()
B
barrierye 已提交
1097
        while True:
B
barriery 已提交
1098
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1099
            try:
B
barriery 已提交
1100
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1101
            except ChannelStopError:
B
barriery 已提交
1102
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1103
                self._finalize(is_thread_op)
B
barrierye 已提交
1104
                break
B
barriery 已提交
1105
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1106
            in_time = end - start
1107

B
barriery 已提交
1108 1109
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1110
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1111 1112
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1113
            except ChannelStopError:
B
barriery 已提交
1114
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1115
                self._finalize(is_thread_op)
B
barriery 已提交
1116
                break
1117 1118 1119
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1120 1121

            # preprecess
B
barriery 已提交
1122
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1123 1124
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1125
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1126
            prep_time = end - start
1127
            try:
T
TeslaZhao 已提交
1128
                # put error requests into output channel, skip process and postprocess stage
1129
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1130
                    self._push_to_output_channels(
B
barriery 已提交
1131 1132
                        data=err_channeldata,
                        channels=output_channels,
1133 1134 1135
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1136
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1137 1138
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1139
            if len(preped_data_dict) == 0:
1140 1141
                continue

B
barrierye 已提交
1142
            # process
B
barriery 已提交
1143
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1144
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1145
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1146
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1147
            midp_time = end - start
1148 1149
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1150
                    self._push_to_output_channels(
B
barriery 已提交
1151 1152
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1153 1154
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1155
            except ChannelStopError:
B
barriery 已提交
1156
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1157 1158 1159
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1160
                continue
1161 1162

            # postprocess
B
barriery 已提交
1163
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1164
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1165
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1166
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1167
            postp_time = end - start
1168 1169
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1170
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1171
                        data=err_channeldata,
B
barriery 已提交
1172
                        channels=output_channels,
B
barriery 已提交
1173 1174
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1175
            except ChannelStopError:
B
barriery 已提交
1176
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1177 1178 1179
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1180
                continue
1181 1182

            # push data to channel (if run succ)
B
barriery 已提交
1183
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1184
            try:
B
barriery 已提交
1185
                profile_str = profiler.gen_profile_str()
1186
                for data_id, postped_data in postped_data_dict.items():
B
barriery 已提交
1187 1188
                    if self._server_use_profile:
                        sys.stderr.write(profile_str)
1189
                    self._push_to_output_channels(
B
barriery 已提交
1190 1191 1192
                        data=postped_data,
                        channels=output_channels,
                        profile_str=profile_str,
B
barriery 已提交
1193 1194
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
B
barrierye 已提交
1195
            except ChannelStopError:
B
barriery 已提交
1196
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1197
                self._finalize(is_thread_op)
B
barrierye 已提交
1198
                break
B
barriery 已提交
1199
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1200
            out_time = end - start
B
barriery 已提交
1201
            if trace_buffer is not None:
B
barrierye 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1219

W
wangjiawei04 已提交
1220
    def _initialize(self, is_thread_op, concurrency_idx):
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
B
barriery 已提交
1234 1235 1236 1237 1238 1239
        if is_thread_op:
            with self._for_init_op_lock:
                if not self._succ_init_op:
                    # for the threaded version of Op, each thread cannot get its concurrency_idx
                    self.concurrency_idx = None
                    # init client
W
wangjiawei04 已提交
1240
                    self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1241
                                                   self._server_endpoints)
B
barriery 已提交
1242 1243 1244 1245
                    # user defined
                    self.init_op()
                    self._succ_init_op = True
                    self._succ_close_op = False
B
bug fix  
barriery 已提交
1246 1247 1248
        else:
            self.concurrency_idx = concurrency_idx
            # init client
W
wangjiawei04 已提交
1249 1250
            self.client = self.init_client(self._client_config,
                                           self._server_endpoints)
B
bug fix  
barriery 已提交
1251 1252
            # user defined
            self.init_op()
B
barriery 已提交
1253

B
barriery 已提交
1254 1255 1256 1257 1258
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1259 1260 1261 1262 1263 1264 1265 1266
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1267 1268 1269 1270 1271

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1272
class RequestOp(Op):
1273 1274 1275 1276 1277 1278
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1279

B
barrierye 已提交
1280
    def __init__(self):
1281 1282 1283
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1284 1285
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1286
        # init op
1287
        try:
1288
            self.init_op()
1289
        except Exception as e:
B
barriery 已提交
1290
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1291
            os._exit(-1)
B
barrierye 已提交
1292 1293

    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

        for idx, key in enumerate(request.key):
            data = request.value[idx]
            try:
                evaled_data = eval(data)
                if isinstance(evaled_data, np.ndarray):
                    data = evaled_data
            except Exception as e:
                pass
            dict_data[key] = data
T
TeslaZhao 已提交
1322
        log_id = request.logid
1323 1324 1325
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}".format(log_id, request.clientip, request.name,
                                       request.method))
T
TeslaZhao 已提交
1326 1327

        return dict_data, log_id, None, ""
B
barrierye 已提交
1328 1329 1330


class ResponseOp(Op):
1331 1332 1333 1334 1335 1336
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1337

B
barrierye 已提交
1338
    def __init__(self, input_ops):
1339 1340 1341
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1342 1343
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
B
barrierye 已提交
1344
        # init op
1345
        try:
1346
            self.init_op()
1347
        except Exception as e:
B
barriery 已提交
1348 1349
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1350
            os._exit(-1)
B
barrierye 已提交
1351 1352

    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1353
        """
1354 1355 1356 1357 1358 1359 1360 1361
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1362
        """
B
barrierye 已提交
1363
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1364 1365 1366
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1367
            # Framework level errors
B
barrierye 已提交
1368 1369 1370 1371
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1372
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1373
                for name, var in feed.items():
1374 1375
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1376 1377 1378 1379
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1380 1381
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1382 1383
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1384 1385
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1386
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1387
                        break
1388 1389
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1390
            else:
T
TeslaZhao 已提交
1391 1392 1393
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1394
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1395
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1396
        else:
1397
            # Product level errors
T
TeslaZhao 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1410
        return resp
1411 1412 1413


class VirtualOp(Op):
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1431 1432 1433

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1434
            name=name, input_ops=None, concurrency=concurrency)
1435 1436 1437
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1447 1448
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1449
    def _actual_pred_op_names(self, op):
1450 1451 1452 1453 1454 1455 1456 1457 1458
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1459
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1460 1461 1462 1463 1464 1465 1466
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1467
    def add_output_channel(self, channel):
1468 1469 1470 1471 1472 1473 1474 1475 1476
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1477
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1478
            _LOGGER.critical(
B
barriery 已提交
1479 1480 1481
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1482
            os._exit(-1)
1483
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1484 1485
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1486
        self._outputs.append(channel)
D
dongdaxiang 已提交
1487

1488
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1489
             is_thread_op):
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1504
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1505 1506 1507
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1508 1509 1510 1511 1512 1513 1514
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1515 1516
        while True:
            try:
1517
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1518
            except ChannelStopError:
B
barriery 已提交
1519
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1520
                self._finalize(is_thread_op)
B
barrierye 已提交
1521
                break
D
dongdaxiang 已提交
1522

B
barrierye 已提交
1523
            try:
1524 1525 1526 1527
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1528
            except ChannelStopError:
B
barriery 已提交
1529
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1530
                self._finalize(is_thread_op)
B
barrierye 已提交
1531
                break