general_model.cpp 5.7 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <fstream>
G
guru4elephant 已提交
16 17 18 19
#include "core/general-client/include/general_model.h"
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

namespace baidu {
namespace paddle_serving {
namespace general_model {

void PredictorClient::init(const std::string & conf_file) {
  _conf_file = conf_file;
  std::ifstream fin(conf_file);
  if (!fin) {
    LOG(ERROR) << "Your inference conf file can not be found";
    exit(-1);
  }
  _feed_name_to_idx.clear();
  _fetch_name_to_idx.clear();
  _shape.clear();
  int feed_var_num = 0;
  int fetch_var_num = 0;
  fin >> feed_var_num >> fetch_var_num;
  std::string name;
  std::string fetch_var_name;
  int shape_num = 0;
  int dim = 0;
  for (int i = 0; i < feed_var_num; ++i) {
    fin >> name;
    _feed_name_to_idx[name] = i;
    fin >> shape_num;
    std::vector<int> tmp_feed_shape;
    for (int j = 0; j < shape_num; ++j) {
      fin >> dim;
      tmp_feed_shape.push_back(dim);
    }
    _shape.push_back(tmp_feed_shape);
  }

  for (int i = 0; i < fetch_var_num; ++i) {
    fin >> name;
    fin >> fetch_var_name;
    _fetch_name_to_idx[name] = i;
    _fetch_name_to_var_name[name] = fetch_var_name;
  }
}

void PredictorClient::set_predictor_conf(
    const std::string & conf_path,
    const std::string & conf_file) {
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}

int PredictorClient::create_predictor() {
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

std::vector<std::vector<float> > PredictorClient::predict(
    const std::vector<std::vector<float> > & float_feed,
    const std::vector<std::string> & float_feed_name,
    const std::vector<std::vector<int64_t> > & int_feed,
    const std::vector<std::string> & int_feed_name,
    const std::vector<std::string> & fetch_name) {

  std::vector<std::vector<float> > fetch_result;
  if (fetch_name.size() == 0) {
    return fetch_result;
  }
  fetch_result.resize(fetch_name.size());

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
  Request req;
  std::vector<Tensor *> tensor_vec;
  FeedInst * inst = req.add_insts();
  for (auto & name : float_feed_name) {
    tensor_vec.push_back(inst->add_tensor_array());
  }

  for (auto & name : int_feed_name) {
    tensor_vec.push_back(inst->add_tensor_array());
  }

  int vec_idx = 0;
  for (auto & name : float_feed_name) {
    int idx = _feed_name_to_idx[name];
    Tensor * tensor = tensor_vec[idx];
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(1);
    for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
      tensor->add_data(
          (char *)(&(float_feed[vec_idx][j])), sizeof(float));
    }
    vec_idx++;
  }

  vec_idx = 0;
  for (auto & name : int_feed_name) {
    int idx = _feed_name_to_idx[name];
    Tensor * tensor = tensor_vec[idx];
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(0);
    for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
      tensor->add_data(
          (char *)(&(int_feed[vec_idx][j])), sizeof(int64_t));
    }
    vec_idx++;
  }

  // std::map<std::string, std::vector<float> > result;
  Response res;

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
    for (auto & name : fetch_name) {
      int idx = _fetch_name_to_idx[name];
      int len = res.insts(0).tensor_array(idx).data_size();
      VLOG(3) << "fetch name: " << name;
      VLOG(3) << "tensor data size: " << len;
      fetch_result[idx].resize(len);
      for (int i = 0; i < len; ++i) {
        /*
        (*fetch_result)[name][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
        VLOG(3) << *(const float *)
            res.insts(0).tensor_array(idx).data(i).c_str();
        fetch_result[name][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
        */
        fetch_result[idx][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
      }
    }
  }

  return fetch_result;
}

std::vector<std::vector<float> > PredictorClient::predict_with_profile(
    const std::vector<std::vector<float> > & float_feed,
    const std::vector<std::string> & float_feed_name,
    const std::vector<std::vector<int64_t> > & int_feed,
    const std::vector<std::string> & int_feed_name,
    const std::vector<std::string> & fetch_name) {
  std::vector<std::vector<float> > res;
  return res;
}

}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu