pipeline_client.py 2.3 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import grpc
import numpy as np
B
barrierye 已提交
17 18
from numpy import *
import logging
B
barrierye 已提交
19 20 21
from .proto import pipeline_service_pb2
from .proto import pipeline_service_pb2_grpc

B
barrierye 已提交
22 23
_LOGGER = logging.getLogger(__name__)

B
barrierye 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

class PipelineClient(object):
    def __init__(self):
        self._channel = None

    def connect(self, endpoint):
        self._channel = grpc.insecure_channel(endpoint)
        self._stub = pipeline_service_pb2_grpc.PipelineServiceStub(
            self._channel)

    def _pack_data_for_infer(self, feed_dict):
        req = pipeline_service_pb2.Request()
        for key, value in feed_dict.items():
            if not isinstance(value, str):
                raise TypeError("only str type is supported.")
            req.key.append(key)
            req.value.append(value)
        return req

    def predict(self, feed_dict, fetch):
        if not isinstance(feed_dict, dict):
            raise TypeError(
                "feed must be dict type with format: {name: value}.")
        if not isinstance(fetch, list):
            raise TypeError(
                "fetch_with_type must be list type with format: [name].")
        req = self._pack_data_for_infer(feed_dict)
        resp = self._stub.inference(req)
        if resp.ecode != 0:
            return {"ecode": resp.ecode, "error_info": resp.error_info}
        fetch_map = {"ecode": resp.ecode}
        for idx, key in enumerate(resp.key):
            if key not in fetch:
                continue
B
barrierye 已提交
58 59 60 61 62 63
            data = resp.value[idx]
            try:
                data = eval(resp.value[idx])
            except Exception as e:
                pass
            fetch_map[key] = data
B
barrierye 已提交
64
        return fetch_map