COMPILE.md 7.8 KB
Newer Older
J
Jiawei Wang 已提交
1
# How to compile PaddleServing
D
Dong Daxiang 已提交
2

J
Jiawei Wang 已提交
3 4 5
([简体中文](./COMPILE_CN.md)|English)

## Compilation environment requirements
B
barrierye 已提交
6

B
barrierye 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|            module            |              version              |
| :--------------------------: | :-------------------------------: |
|              OS              |             CentOS 7              |
|             gcc              |          4.8.5 and later          |
|           gcc-c++            |          4.8.5 and later          |
|             git              |          3.82 and later           |
|            cmake             |          3.2.0 and later          |
|            Python            |  2.7.2 and later / 3.6 and later  |
|              Go              |          1.9.2 and later          |
|             git              |         2.17.1 and later          |
|         glibc-static         |               2.17                |
|        openssl-devel         |              1.0.2k               |
|         bzip2-devel          |          1.0.6 and later          |
| python-devel / python3-devel | 2.7.5 and later / 3.6.8 and later |
|         sqlite-devel         |         3.7.17 and later          |
|           patchelf           |           0.9 and later           |
|           libXext            |               1.3.3               |
|            libSM             |               1.2.2               |
|          libXrender          |              0.9.10               |
D
Dong Daxiang 已提交
26

B
barrierye 已提交
27
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md).
B
barrierye 已提交
28

B
barrierye 已提交
29 30 31 32
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:

- Set `DPYTHON_INCLUDE_DIR` to `$PYTHONROOT/include/python3.6m/`
- Set  `DPYTHON_LIBRARIES` to `$PYTHONROOT/lib64/libpython3.6.so`
M
fix doc  
MRXLT 已提交
33
- Set `DPYTHON_EXECUTABLE` to `$PYTHONROOT/bin/python3.6`
B
barrierye 已提交
34

J
Jiawei Wang 已提交
35
## Get Code
D
Dong Daxiang 已提交
36 37 38

``` python
git clone https://github.com/PaddlePaddle/Serving
39
cd Serving && git submodule update --init --recursive
D
Dong Daxiang 已提交
40 41
```

B
barrierye 已提交
42 43


B
barrierye 已提交
44

J
Jiawei Wang 已提交
45
## PYTHONROOT Setting
D
Dong Daxiang 已提交
46

B
barrierye 已提交
47
```shell
J
Jiawei Wang 已提交
48
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT
D
Dong Daxiang 已提交
49 50 51
export PYTHONROOT=/usr/
```

B
barrierye 已提交
52 53
In the default centos7 image we provide, the Python path is `/usr/bin/python`. If you want to use our centos6 image, you need to set it to `export PYTHONROOT=/usr/local/python2.7/`.

B
barrierye 已提交
54 55 56 57 58 59 60 61 62 63 64 65


## Install Python dependencies

```shell
pip install -r python/requirements.txt
```

If Python3 is used, replace `pip` with `pip3`.



J
Jiawei Wang 已提交
66
## Compile Server
B
barrierye 已提交
67

J
Jiawei Wang 已提交
68
### Integrated CPU version paddle inference library
B
barrierye 已提交
69

D
Dong Daxiang 已提交
70
``` shell
B
barrierye 已提交
71
mkdir server-build-cpu && cd server-build-cpu
B
barrierye 已提交
72
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
D
Dong Daxiang 已提交
73 74 75
make -j10
```

J
Jiawei Wang 已提交
76
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
B
barrierye 已提交
77

J
Jiawei Wang 已提交
78
### Integrated GPU version paddle inference library
B
barrierye 已提交
79

D
Dong Daxiang 已提交
80
``` shell
B
barrierye 已提交
81
mkdir server-build-gpu && cd server-build-gpu
B
barrierye 已提交
82
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON ..
D
Dong Daxiang 已提交
83 84 85
make -j10
```

J
Jiawei Wang 已提交
86
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
87

B
barrierye 已提交
88
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
M
MRXLT 已提交
89

B
barrierye 已提交
90 91


J
Jiawei Wang 已提交
92
## Compile Client
D
Dong Daxiang 已提交
93 94

``` shell
B
barrierye 已提交
95
mkdir client-build && cd client-build
B
barrierye 已提交
96
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON ..
D
Dong Daxiang 已提交
97 98
make -j10
```
D
Dong Daxiang 已提交
99

J
Jiawei Wang 已提交
100
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
101

B
barrierye 已提交
102 103


J
Jiawei Wang 已提交
104
## Compile the App
B
barrierye 已提交
105 106

```bash
B
barrierye 已提交
107
mkdir app-build && cd app-build
108
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DAPP=ON ..
B
barrierye 已提交
109 110 111
make
```

B
barrierye 已提交
112 113


J
Jiawei Wang 已提交
114 115
## Install wheel package

B
barrierye 已提交
116
Regardless of the client, server or App part, after compiling, install the whl package in `python/dist/` in the temporary directory(`server-build-cpu`, `server-build-gpu`, `client-build`,`app-build`) of the compilation process.
B
barrierye 已提交
117

B
barrierye 已提交
118 119


J
Jiawei Wang 已提交
120
## Note
B
barrierye 已提交
121

J
Jiawei Wang 已提交
122
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
B
barrierye 已提交
123

124

B
barrierye 已提交
125

B
barrierye 已提交
126 127 128 129 130 131
## Verify

Please use the example under `python/examples` to verify.



J
Jiawei Wang 已提交
132
## CMake Option Description
B
barrierye 已提交
133

J
Jiawei Wang 已提交
134
| Compile Options  |                    Description             | Default |
B
barrierye 已提交
135 136 137 138 139 140 141 142 143 144 145
| :--------------: | :----------------------------------------: | :--: |
|     WITH_AVX     | Compile Paddle Serving with AVX intrinsics | OFF  |
|     WITH_MKL     |  Compile Paddle Serving with MKL support   | OFF  |
|     WITH_GPU     |   Compile Paddle Serving with NVIDIA GPU   | OFF  |
|    CUDNN_ROOT    |    Define CuDNN library and header path    |      |
|      CLIENT      |       Compile Paddle Serving Client        | OFF  |
|      SERVER      |       Compile Paddle Serving Server        | OFF  |
|       APP        |     Compile Paddle Serving App package     | OFF  |
| WITH_ELASTIC_CTR |        Compile ELASITC-CTR solution        | OFF  |
|       PACK       |              Compile for whl               | OFF  |

J
Jiawei Wang 已提交
146
### WITH_GPU Option
B
barrierye 已提交
147

J
Jiawei Wang 已提交
148
Paddle Serving supports prediction on the GPU through the PaddlePaddle inference library. The WITH_GPU option is used to detect basic libraries such as CUDA/CUDNN on the system. If an appropriate version is detected, the GPU Kernel will be compiled when PaddlePaddle is compiled.
B
barrierye 已提交
149

J
Jiawei Wang 已提交
150
To compile the Paddle Serving GPU version on bare metal, you need to install these basic libraries:
B
barrierye 已提交
151 152 153 154 155

- CUDA
- CuDNN
- NCCL2

J
Jiawei Wang 已提交
156 157 158 159
Note here:

1. The basic library versions such as CUDA/CUDNN installed on the system where Serving is compiled, needs to be compatible with the actual GPU device. For example, the Tesla V100 card requires at least CUDA 9.0. If the version of the basic library such as CUDA used during compilation is too low, the generated GPU code is not compatible with the actual hardware device, which will cause the Serving process to fail to start or serious problems such as coredump.
2. Install the CUDA driver compatible with the actual GPU device on the system running Paddle Serving, and install the basic library compatible with the CUDA/CuDNN version used during compilation. If the version of CUDA/CuDNN installed on the system running Paddle Serving is lower than the version used at compile time, it may cause some cuda function call failures and other problems.
B
barrierye 已提交
160 161


J
Jiawei Wang 已提交
162
The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
B
barrierye 已提交
163 164 165 166 167 168

|        |  CUDA   |          CuDNN           | NCCL2  |
| :----: | :-----: | :----------------------: | :----: |
| CUDA 8 | 8.0.61  | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4  |
| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 |

J
Jiawei Wang 已提交
169
### How to make the compiler detect the CuDNN library
B
barrierye 已提交
170

J
Jiawei Wang 已提交
171
Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN.
B
barrierye 已提交
172

J
Jiawei Wang 已提交
173
### How to make the compiler detect the nccl library
B
barrierye 已提交
174

J
Jiawei Wang 已提交
175
After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example):
B
barrierye 已提交
176 177 178 179 180 181

```shell
export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH
```