client.py 31.5 KB
Newer Older
Z
zhangjun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

import paddle_serving_client
import os
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import numpy as np
import requests
import json
import base64
import time
import sys

import grpc
from .proto import multi_lang_general_model_service_pb2
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
from .proto import multi_lang_general_model_service_pb2_grpc

H
HexToString 已提交
34 35 36 37
#param 'type'(which is in feed_var or fetch_var) = 0 means dataType is int64
#param 'type'(which is in feed_var or fetch_var) = 1 means dataType is float32
#param 'type'(which is in feed_var or fetch_var) = 2 means dataType is int32
#param 'type'(which is in feed_var or fetch_var) = 3 means dataType is string(also called bytes in proto)
Z
zhangjun 已提交
38 39 40
int64_type = 0
float32_type = 1
int32_type = 2
41
bytes_type = 3
H
HexToString 已提交
42
#int_type,float_type,string_type are the set of each subdivision classes.
Z
zhangjun 已提交
43 44
int_type = set([int64_type, int32_type])
float_type = set([float32_type])
H
HexToString 已提交
45
string_type = set([bytes_type])
Z
zhangjun 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148


class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
        self.rpc_timeout_ms = 20000
        self.load_balance_strategy = "la"

    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)

    def set_load_banlance_strategy(self, strategy):
        self.load_balance_strategy = strategy

    def gen_desc(self, rpc_timeout_ms):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)

        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = rpc_timeout_ms
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"

        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

        return self.sdk_desc


class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
        self.feed_shapes_ = {}
        self.feed_types_ = {}
        self.feed_names_to_idx_ = {}
        self.pid = os.getpid()
        self.predictor_sdk_ = None
        self.producers = []
        self.consumer = None
        self.profile_ = _Profiler()
        self.all_numpy_input = True
        self.has_numpy_input = False
        self.rpc_timeout_ms = 20000
        from .serving_client import PredictorRes
        self.predictorres_constructor = PredictorRes

149 150 151 152 153 154 155 156 157 158 159 160 161
    def load_client_config(self, model_config_path_list):
        if isinstance(model_config_path_list, str):
            model_config_path_list = [model_config_path_list]
        elif isinstance(model_config_path_list, list):
            pass

        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
                file_path_list.append("{}/serving_server_conf.prototxt".format(
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
162 163
        from .serving_client import PredictorClient
        model_conf = m_config.GeneralModelConfig()
164
        f = open(file_path_list[0], 'r')
Z
zhangjun 已提交
165 166 167 168 169 170 171 172
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
        self.client_handle_ = PredictorClient()
173
        self.client_handle_.init(file_path_list)
Z
zhangjun 已提交
174 175 176 177 178 179
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
H
HexToString 已提交
180
        self.feed_names_to_idx_ = {}  #this is not useful
Z
zhangjun 已提交
181
        self.lod_tensor_set = set()
H
HexToString 已提交
182
        self.feed_tensor_len = {}  #this is only used for shape check
Z
zhangjun 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        self.key = None

        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape

            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
197 198 199 200 201 202 203 204
        if len(file_path_list) > 1:
            model_conf = m_config.GeneralModelConfig()
            f = open(file_path_list[-1], 'r')
            model_conf = google.protobuf.text_format.Merge(
                str(f.read()), model_conf)
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
Z
zhangjun 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
        return

    def add_variant(self, tag, cluster, variant_weight):
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

    def set_rpc_timeout_ms(self, rpc_timeout):
        if not isinstance(rpc_timeout, int):
            raise ValueError("rpc_timeout must be int type.")
        else:
            self.rpc_timeout_ms = rpc_timeout

    def use_key(self, key_filename):
        with open(key_filename, "rb") as f:
            self.key = f.read()

    def get_serving_port(self, endpoints):
        if self.key is not None:
            req = json.dumps({"key": base64.b64encode(self.key).decode()})
        else:
            req = json.dumps({})
        r = requests.post("http://" + endpoints[0], req)
        result = r.json()
        print(result)
        if "endpoint_list" not in result:
            raise ValueError("server not ready")
        else:
            endpoints = [
                endpoints[0].split(":")[0] + ":" +
                str(result["endpoint_list"][0])
            ]
            return endpoints

    def connect(self, endpoints=None, encryption=False):
        # check whether current endpoint is available
        # init from client config
        # create predictor here
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise ValueError(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if encryption:
                endpoints = self.get_serving_port(endpoints)
            if self.predictor_sdk_ is None:
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
                                 100)
            else:
                print(
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
                    format(endpoints))
        sdk_desc = self.predictor_sdk_.gen_desc(self.rpc_timeout_ms)
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
            raise ValueError("The shape of feed tensor {} not match.".format(
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
            #raise SystemExit("The shape of feed tensor {} not match.".format(
            #    key))
            pass

    def predict(self,
                feed=None,
                fetch=None,
                batch=False,
                need_variant_tag=False,
                log_id=0):
        self.profile_.record('py_prepro_0')

        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
            raise ValueError("Fetch only accepts string and list of string")

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
            raise ValueError("Feed only accepts dict and list of dict")

        int_slot_batch = []
        int_feed_names = []
        int_shape = []
        int_lod_slot_batch = []
318 319
        float_slot_batch = []
        float_feed_names = []
Z
zhangjun 已提交
320 321
        float_lod_slot_batch = []
        float_shape = []
322 323 324 325
        string_slot_batch = []
        string_feed_names = []
        string_lod_slot_batch = []
        string_shape = []
Z
zhangjun 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

        fetch_names = []
        counter = 0
        batch_size = len(feed_batch)

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
                "Fetch names should not be empty or out of saved fetch list.")
            return {}

        for i, feed_i in enumerate(feed_batch):
            int_slot = []
            int_lod_slot = []
343
            float_slot = []
Z
zhangjun 已提交
344
            float_lod_slot = []
345 346
            string_slot = []
            string_lod_slot = []
Z
zhangjun 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            for key in feed_i:
                if ".lod" not in key and key not in self.feed_names_:
                    raise ValueError("Wrong feed name: {}.".format(key))
                if ".lod" in key:
                    continue
                #if not isinstance(feed_i[key], np.ndarray):
                self.shape_check(feed_i, key)
                if self.feed_types_[key] in int_type:
                    if i == 0:
                        int_feed_names.append(key)
                        shape_lst = []
                        if batch == False:
                            feed_i[key] = feed_i[key][np.newaxis, :]
                        if isinstance(feed_i[key], np.ndarray):
                            shape_lst.extend(list(feed_i[key].shape))
                            int_shape.append(shape_lst)
                        else:
                            int_shape.append(self.feed_shapes_[key])
                        if "{}.lod".format(key) in feed_i:
                            int_lod_slot_batch.append(feed_i["{}.lod".format(
                                key)])
                        else:
                            int_lod_slot_batch.append([])

                    if isinstance(feed_i[key], np.ndarray):
                        int_slot.append(feed_i[key])
                        self.has_numpy_input = True
                    else:
                        int_slot.append(feed_i[key])
                        self.all_numpy_input = False

                elif self.feed_types_[key] in float_type:
                    if i == 0:
                        float_feed_names.append(key)
                        shape_lst = []
                        if batch == False:
                            feed_i[key] = feed_i[key][np.newaxis, :]
                        if isinstance(feed_i[key], np.ndarray):
                            shape_lst.extend(list(feed_i[key].shape))
                            float_shape.append(shape_lst)
                        else:
                            float_shape.append(self.feed_shapes_[key])
                        if "{}.lod".format(key) in feed_i:
                            float_lod_slot_batch.append(feed_i["{}.lod".format(
                                key)])
                        else:
                            float_lod_slot_batch.append([])

                    if isinstance(feed_i[key], np.ndarray):
                        float_slot.append(feed_i[key])
                        self.has_numpy_input = True
                    else:
                        float_slot.append(feed_i[key])
                        self.all_numpy_input = False
401 402 403 404 405 406 407 408 409 410 411 412
                #if input is string, feed is not numpy.
                elif self.feed_types_[key] in string_type:
                    if i == 0:
                        string_feed_names.append(key)
                        string_shape.append(self.feed_shapes_[key])
                        if "{}.lod".format(key) in feed_i:
                            string_lod_slot_batch.append(feed_i["{}.lod".format(
                                key)])
                        else:
                            string_lod_slot_batch.append([])
                    string_slot.append(feed_i[key])
                    self.has_numpy_input = True
Z
zhangjun 已提交
413 414
            int_slot_batch.append(int_slot)
            int_lod_slot_batch.append(int_lod_slot)
415
            float_slot_batch.append(float_slot)
Z
zhangjun 已提交
416
            float_lod_slot_batch.append(float_lod_slot)
417 418
            string_slot_batch.append(string_slot)
            string_lod_slot_batch.append(string_lod_slot)
Z
zhangjun 已提交
419 420 421 422 423 424 425 426 427

        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

        result_batch_handle = self.predictorres_constructor()
        if self.all_numpy_input:
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape,
                float_lod_slot_batch, int_slot_batch, int_feed_names, int_shape,
H
HexToString 已提交
428 429 430
                int_lod_slot_batch, string_slot_batch, string_feed_names,
                string_shape, string_lod_slot_batch, fetch_names,
                result_batch_handle, self.pid, log_id)
Z
zhangjun 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        elif self.has_numpy_input == False:
            raise ValueError(
                "Please make sure all of your inputs are numpy array")
        else:
            raise ValueError(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )

        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

        if res == -1:
            return None

        multi_result_map = []
        model_engine_names = result_batch_handle.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
            result_map = {}
            # result map needs to be a numpy array
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int64_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int64_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == float32_type:
                    result_map[name] = result_batch_handle.get_float_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == int32_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int32_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
            multi_result_map.append(result_map)
        ret = None
        if len(model_engine_names) == 1:
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
        else:
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

        # When using the A/B test, the tag of variant needs to be returned
        return ret if not need_variant_tag else [
            ret, result_batch_handle.variant_tag()
        ]

    def release(self):
        self.client_handle_.destroy_predictor()
        self.client_handle_ = None


class MultiLangClient(object):
    def __init__(self):
        self.channel_ = None
        self.stub_ = None
        self.rpc_timeout_s_ = 2
        self.profile_ = _Profiler()

    def add_variant(self, tag, cluster, variant_weight):
        # TODO
        raise Exception("cannot support ABtest yet")

    def set_rpc_timeout_ms(self, rpc_timeout):
        if self.stub_ is None:
            raise Exception("set timeout must be set after connect.")
        if not isinstance(rpc_timeout, int):
            # for bclient
            raise ValueError("rpc_timeout must be int type.")
        self.rpc_timeout_s_ = rpc_timeout / 1000.0
        timeout_req = multi_lang_general_model_service_pb2.SetTimeoutRequest()
        timeout_req.timeout_ms = rpc_timeout
        resp = self.stub_.SetTimeout(timeout_req)
        return resp.err_code == 0

    def connect(self, endpoints):
        # https://github.com/tensorflow/serving/issues/1382
        options = [('grpc.max_receive_message_length', 512 * 1024 * 1024),
                   ('grpc.max_send_message_length', 512 * 1024 * 1024),
                   ('grpc.lb_policy_name', 'round_robin')]
        # TODO: weight round robin
        g_endpoint = 'ipv4:{}'.format(','.join(endpoints))
        self.channel_ = grpc.insecure_channel(g_endpoint, options=options)
        self.stub_ = multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelServiceStub(
            self.channel_)
        # get client model config
        get_client_config_req = multi_lang_general_model_service_pb2.GetClientConfigRequest(
        )
        resp = self.stub_.GetClientConfig(get_client_config_req)
557 558
        model_config_path_list = resp.client_config_str_list
        self._parse_model_config(model_config_path_list)
Z
zhangjun 已提交
559 560 561 562 563 564 565 566 567

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

568 569 570 571 572 573 574 575 576 577 578 579 580
    def _parse_model_config(self, model_config_path_list):
        if isinstance(model_config_path_list, str):
            model_config_path_list = [model_config_path_list]
        elif isinstance(model_config_path_list, list):
            pass

        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
                file_path_list.append("{}/serving_server_conf.prototxt".format(
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
581
        model_conf = m_config.GeneralModelConfig()
582 583 584
        f = open(file_path_list[0], 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
Z
zhangjun 已提交
585 586 587 588 589 590 591 592 593
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
594 595 596 597 598 599 600
        if len(file_path_list) > 1:
            model_conf = m_config.GeneralModelConfig()
            f = open(file_path_list[-1], 'r')
            model_conf = google.protobuf.text_format.Merge(
                str(f.read()), model_conf)
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
Z
zhangjun 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _pack_inference_request(self, feed, fetch, is_python, log_id):
        req = multi_lang_general_model_service_pb2.InferenceRequest()
        req.fetch_var_names.extend(fetch)
        req.is_python = is_python
        req.log_id = log_id
        feed_var_names = []
        for key in feed.keys():
            if '.lod' not in key:
                feed_var_names.append(key)
        req.feed_var_names.extend(feed_var_names)
        inst = multi_lang_general_model_service_pb2.FeedInst()
        for name in req.feed_var_names:
            tensor = multi_lang_general_model_service_pb2.Tensor()
            var = feed[name]
            v_type = self.feed_types_[name]
            if is_python:
                data = None
                if isinstance(var, list):
                    if v_type == 0:  # int64
                        data = np.array(var, dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(var, dtype="float32")
                    elif v_type == 2:  # int32
                        data = np.array(var, dtype="int32")
                    else:
                        raise Exception("error tensor value type.")
                elif isinstance(var, np.ndarray):
                    data = var
                    if v_type == 0:
                        if data.dtype != 'int64':
                            data = data.astype("int64")
                    elif v_type == 1:
                        if data.dtype != 'float32':
                            data = data.astype("float32")
                    elif v_type == 2:
                        if data.dtype != 'int32':
                            data = data.astype("int32")
                    else:
                        raise Exception("error tensor value type.")
                else:
                    raise Exception("var must be list or ndarray.")
                tensor.data = data.tobytes()
            tensor.shape.extend(list(var.shape))
            if "{}.lod".format(name) in feed.keys():
                tensor.lod.extend(feed["{}.lod".format(name)])
            inst.tensor_array.append(tensor)
        req.insts.append(inst)
        return req

    def _unpack_inference_response(self, resp, fetch, is_python,
                                   need_variant_tag):
        if resp.err_code != 0:
            return None
        tag = resp.tag
        multi_result_map = {}
        for model_result in resp.outputs:
            inst = model_result.insts[0]
            result_map = {}
            for i, name in enumerate(fetch):
                var = inst.tensor_array[i]
                v_type = self.fetch_types_[name]
                if is_python:
                    if v_type == 0:  # int64
                        result_map[name] = np.frombuffer(
                            var.data, dtype="int64")
                    elif v_type == 1:  # float32
                        result_map[name] = np.frombuffer(
                            var.data, dtype="float32")
                    else:
                        raise Exception("error type.")
                else:
                    if v_type == 0:  # int64
                        result_map[name] = np.array(
                            list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        result_map[name] = np.array(
                            list(var.float_data), dtype="float32")
                    else:
                        raise Exception("error type.")
                result_map[name].shape = list(var.shape)
                if name in self.lod_tensor_set_:
                    result_map["{}.lod".format(name)] = np.array(list(var.lod))
            multi_result_map[model_result.engine_name] = result_map
        ret = None
        if len(resp.outputs) == 1:
            ret = list(multi_result_map.values())[0]
        else:
            ret = multi_result_map

        ret["serving_status_code"] = 0
        return ret if not need_variant_tag else [ret, tag]

    def _done_callback_func(self, fetch, is_python, need_variant_tag):
        def unpack_resp(resp):
            return self._unpack_inference_response(resp, fetch, is_python,
                                                   need_variant_tag)

        return unpack_resp

    def get_feed_names(self):
        return self.feed_names_

    def predict(self,
                feed,
                fetch,
                batch=True,
                need_variant_tag=False,
                asyn=False,
                is_python=True,
                log_id=0):
        if isinstance(feed, dict) is False:
            raise ValueError("Type Error. grpc feed must be dict.")
        if batch is False:
            for key in feed:
                if ".lod" not in key:
                    feed[key] = feed[key][np.newaxis, :]
        if not asyn:
            try:
                self.profile_.record('py_prepro_0')
                req = self._pack_inference_request(
                    feed, fetch, is_python=is_python, log_id=log_id)
                self.profile_.record('py_prepro_1')

                self.profile_.record('py_client_infer_0')
                resp = self.stub_.Inference(req, timeout=self.rpc_timeout_s_)
                self.profile_.record('py_client_infer_1')

                self.profile_.record('py_postpro_0')
                ret = self._unpack_inference_response(
                    resp,
                    fetch,
                    is_python=is_python,
                    need_variant_tag=need_variant_tag)
                self.profile_.record('py_postpro_1')
                self.profile_.print_profile()
                return ret
            except grpc.RpcError as e:
                return {"serving_status_code": e.code()}
        else:
            req = self._pack_inference_request(
                feed, fetch, is_python=is_python, log_id=log_id)
            call_future = self.stub_.Inference.future(
                req, timeout=self.rpc_timeout_s_)
            return MultiLangPredictFuture(
                call_future,
                self._done_callback_func(
                    fetch,
                    is_python=is_python,
                    need_variant_tag=need_variant_tag))


class MultiLangPredictFuture(object):
    def __init__(self, call_future, callback_func):
        self.call_future_ = call_future
        self.callback_func_ = callback_func

    def result(self):
        try:
            resp = self.call_future_.result()
        except grpc.RpcError as e:
            return {"serving_status_code": e.code()}
        return self.callback_func_(resp)

    def add_done_callback(self, fn):
        def __fn__(call_future):
            assert call_future == self.call_future_
            fn(self)

        self.call_future_.add_done_callback(__fn__)