fluid_cpu_engine.h 16.0 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wangguibao 已提交
15 16 17
#pragma once

#include <pthread.h>
W
wangguibao 已提交
18 19
#include <fstream>
#include <map>
W
wangguibao 已提交
20 21
#include <string>
#include <vector>
W
wangguibao 已提交
22 23
#include "configure/include/configure_parser.h"
#include "configure/inferencer_configure.pb.h"
W
wangguibao 已提交
24
#ifdef BCLOUD
W
Wang Guibao 已提交
25 26 27
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
W
wangguibao 已提交
28
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wang Guibao 已提交
29
#endif
W
wangguibao 已提交
30
#else
W
wangguibao 已提交
31
#include "paddle/fluid/inference/paddle_inference_api.h"
W
wangguibao 已提交
32
#endif
W
wangguibao 已提交
33
#include "predictor/framework/infer.h"
W
wangguibao 已提交
34 35 36 37 38

namespace baidu {
namespace paddle_serving {
namespace fluid_cpu {

39 40
using configure::SigmoidConf;

W
wangguibao 已提交
41
class AutoLock {
W
wangguibao 已提交
42 43 44 45
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }
W
wangguibao 已提交
46

W
wangguibao 已提交
47
  ~AutoLock() { pthread_mutex_unlock(&_mut); }
W
wangguibao 已提交
48

W
wangguibao 已提交
49 50
 private:
  pthread_mutex_t& _mut;
W
wangguibao 已提交
51 52 53
};

class GlobalPaddleCreateMutex {
W
wangguibao 已提交
54 55
 public:
  pthread_mutex_t& mutex() { return _mut; }
W
wangguibao 已提交
56

W
wangguibao 已提交
57 58 59 60
  static pthread_mutex_t& instance() {
    static GlobalPaddleCreateMutex gmutex;
    return gmutex.mutex();
  }
W
wangguibao 已提交
61

W
wangguibao 已提交
62 63
 private:
  GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }
W
wangguibao 已提交
64

W
wangguibao 已提交
65
  pthread_mutex_t _mut;
W
wangguibao 已提交
66 67 68
};

class GlobalSigmoidCreateMutex {
W
wangguibao 已提交
69 70 71
 public:
  pthread_mutex_t& mutex() { return _mut; }
  static pthread_mutex_t& instance() {
W
wangguibao 已提交
72
    static GlobalSigmoidCreateMutex gmutex;
W
wangguibao 已提交
73 74
    return gmutex.mutex();
  }
W
wangguibao 已提交
75

W
wangguibao 已提交
76 77 78 79
 private:
  GlobalSigmoidCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
W
wangguibao 已提交
80 81 82 83
};

// data interface
class FluidFamilyCore {
W
wangguibao 已提交
84 85 86 87
 public:
  virtual ~FluidFamilyCore() {}
  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->Run(*(std::vector<paddle::PaddleTensor>*)in_data,
W
wangguibao 已提交
88
                    (std::vector<paddle::PaddleTensor>*)out_data)) {
W
wangguibao 已提交
89 90
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
W
wangguibao 已提交
91 92
    }

W
wangguibao 已提交
93 94 95
    return true;
  }

96
  virtual int create(const predictor::InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
97 98 99 100 101 102 103 104 105 106 107 108

  virtual int clone(void* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    paddle::PaddlePredictor* p_predictor =
        (paddle::PaddlePredictor*)origin_core;
    _core = p_predictor->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
W
wangguibao 已提交
109
    }
W
wangguibao 已提交
110 111
    return 0;
  }
W
wangguibao 已提交
112

W
wangguibao 已提交
113
  virtual void* get() { return _core.get(); }
W
wangguibao 已提交
114

W
wangguibao 已提交
115 116
 protected:
  std::unique_ptr<paddle::PaddlePredictor> _core;
W
wangguibao 已提交
117 118 119 120
};

// infer interface
class FluidCpuAnalysisCore : public FluidFamilyCore {
W
wangguibao 已提交
121
 public:
122 123
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
124 125 126 127
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
128
    }
W
wangguibao 已提交
129

W
wangguibao 已提交
130 131 132 133 134
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetParamsFile(data_path + "/__params__");
    analysis_config.SetProgFile(data_path + "/__model__");
    analysis_config.DisableGpu();
    analysis_config.SetCpuMathLibraryNumThreads(1);
135 136 137 138 139 140

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim(params.static_optimization(),
                                        params.force_update_static_cache());
    }

W
wangguibao 已提交
141
    analysis_config.SwitchSpecifyInputNames(true);
W
wangguibao 已提交
142
    AutoLock lock(GlobalPaddleCreateMutex::instance());
W
wangguibao 已提交
143 144
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
145 146 147 148 149 150 151 152
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
153 154 155
};

class FluidCpuNativeCore : public FluidFamilyCore {
W
wangguibao 已提交
156
 public:
157 158
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
159 160 161 162
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
163
    }
W
wangguibao 已提交
164 165 166 167 168 169

    paddle::NativeConfig native_config;
    native_config.param_file = data_path + "/__params__";
    native_config.prog_file = data_path + "/__model__";
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
170 171
    native_config.fraction_of_gpu_memory = 0;

W
wangguibao 已提交
172 173 174 175 176 177 178 179 180 181 182 183
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
184 185 186
};

class FluidCpuAnalysisDirCore : public FluidFamilyCore {
W
wangguibao 已提交
187
 public:
188 189
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
190 191 192 193
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
194 195
    }

W
wangguibao 已提交
196 197 198 199 200
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
201 202 203 204 205 206

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim(params.static_optimization(),
                                        params.force_update_static_cache());
    }

W
wangguibao 已提交
207
    AutoLock lock(GlobalPaddleCreateMutex::instance());
W
wangguibao 已提交
208 209
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
210 211 212 213 214 215 216 217
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
218 219 220
};

class FluidCpuNativeDirCore : public FluidFamilyCore {
W
wangguibao 已提交
221
 public:
222 223
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
224 225 226 227 228 229 230 231 232 233
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
234
    native_config.fraction_of_gpu_memory = 0;
W
wangguibao 已提交
235 236 237 238 239 240 241
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
W
wangguibao 已提交
242 243
    }

W
wangguibao 已提交
244 245 246
    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
247 248 249
};

class Parameter {
W
wangguibao 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
 public:
  Parameter() : _row(0), _col(0), _params(NULL) {}
  ~Parameter() {
    LOG(INFO) << "before destroy Parameter, file_name[" << _file_name << "]";
    destroy();
  }

  int init(int row, int col, const char* file_name) {
    destroy();
    _file_name = file_name;
    _row = row;
    _col = col;
    _params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
    if (_params == NULL) {
      LOG(ERROR) << "Load " << _file_name << " malloc error.";
      return -1;
W
wangguibao 已提交
266
    }
W
wangguibao 已提交
267 268 269 270 271 272 273 274 275 276
    LOG(WARNING) << "Load parameter file[" << _file_name << "] success.";
    return 0;
  }

  void destroy() {
    _row = 0;
    _col = 0;
    if (_params != NULL) {
      free(_params);
      _params = NULL;
W
wangguibao 已提交
277
    }
W
wangguibao 已提交
278
  }
W
wangguibao 已提交
279

W
wangguibao 已提交
280 281 282 283
  int load() {
    if (_params == NULL || _row <= 0 || _col <= 0) {
      LOG(ERROR) << "load parameter error [not inited].";
      return -1;
W
wangguibao 已提交
284 285
    }

W
wangguibao 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    FILE* fs = fopen(_file_name.c_str(), "rb");
    if (fs == NULL) {
      LOG(ERROR) << "load " << _file_name << " fopen error.";
      return -1;
    }
    static const uint32_t MODEL_FILE_HEAD_LEN = 16;
    char head[MODEL_FILE_HEAD_LEN] = {0};
    if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
      destroy();
      LOG(ERROR) << "Load " << _file_name << " read head error.";
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
W
wangguibao 已提交
301 302
    }

W
wangguibao 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    uint32_t matrix_size = _row * _col;
    if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      LOG(INFO) << "load " << _file_name << " read ok.";
      return 0;
    } else {
      LOG(ERROR) << "load " << _file_name << " read error.";
      destroy();
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }
    return 0;
  }

 public:
  std::string _file_name;
  int _row;
  int _col;
  float* _params;
W
wangguibao 已提交
328 329 330
};

class SigmoidModel {
W
wangguibao 已提交
331 332 333 334 335 336 337 338 339 340
 public:
  ~SigmoidModel() {}
  int load(const char* sigmoid_w_file,
           const char* sigmoid_b_file,
           float exp_max,
           float exp_min) {
    AutoLock lock(GlobalSigmoidCreateMutex::instance());
    if (0 != _sigmoid_w.init(2, 1, sigmoid_w_file) || 0 != _sigmoid_w.load()) {
      LOG(ERROR) << "load params sigmoid_w failed.";
      return -1;
W
wangguibao 已提交
341
    }
W
wangguibao 已提交
342 343 344 345 346
    LOG(WARNING) << "load sigmoid_w [" << _sigmoid_w._params[0] << "] ["
                 << _sigmoid_w._params[1] << "].";
    if (0 != _sigmoid_b.init(2, 1, sigmoid_b_file) || 0 != _sigmoid_b.load()) {
      LOG(ERROR) << "load params sigmoid_b failed.";
      return -1;
W
wangguibao 已提交
347
    }
W
wangguibao 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    LOG(WARNING) << "load sigmoid_b [" << _sigmoid_b._params[0] << "] ["
                 << _sigmoid_b._params[1] << "].";
    _exp_max_input = exp_max;
    _exp_min_input = exp_min;
    return 0;
  }

  int softmax(float x, double& o) {  // NOLINT
    float _y0 = x * _sigmoid_w._params[0] + _sigmoid_b._params[0];
    float _y1 = x * _sigmoid_w._params[1] + _sigmoid_b._params[1];
    _y0 = (_y0 > _exp_max_input)
              ? _exp_max_input
              : ((_y0 < _exp_min_input) ? _exp_min_input : _y0);
    _y1 = (_y1 > _exp_max_input)
              ? _exp_max_input
              : ((_y1 < _exp_min_input) ? _exp_min_input : _y1);
    o = 1.0f / (1.0f + exp(_y0 - _y1));
    return 0;
  }

 public:
  Parameter _sigmoid_w;
  Parameter _sigmoid_b;
  float _exp_max_input;
  float _exp_min_input;
W
wangguibao 已提交
373 374 375
};

class SigmoidFluidModel {
W
wangguibao 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
 public:
  int softmax(float x, double& o) {  // NOLINT
    return _sigmoid_core->softmax(x, o);
  }  // NOLINT

  std::unique_ptr<SigmoidFluidModel> Clone() {
    std::unique_ptr<SigmoidFluidModel> clone_model;
    clone_model.reset(new SigmoidFluidModel());
    clone_model->_sigmoid_core = _sigmoid_core;
    clone_model->_fluid_core = _fluid_core->Clone();
    return std::move(clone_model);
  }

 public:
  std::unique_ptr<paddle::PaddlePredictor> _fluid_core;
  std::shared_ptr<SigmoidModel> _sigmoid_core;
W
wangguibao 已提交
392 393 394
};

class FluidCpuWithSigmoidCore : public FluidFamilyCore {
W
wangguibao 已提交
395 396 397 398
 public:
  virtual ~FluidCpuWithSigmoidCore() {}

 public:
399 400
  int create(const predictor::InferEngineCreationParams& params) {
    std::string model_path = params.get_path();
W
wangguibao 已提交
401 402 403 404 405 406 407
    size_t pos = model_path.find_last_of("/\\");
    std::string conf_path = model_path.substr(0, pos);
    std::string conf_file = model_path.substr(pos);
    configure::SigmoidConf conf;
    if (configure::read_proto_conf(conf_path, conf_file, &conf) != 0) {
      LOG(ERROR) << "failed load model path: " << model_path;
      return -1;
W
wangguibao 已提交
408 409
    }

W
wangguibao 已提交
410
    _core.reset(new SigmoidFluidModel);
W
wangguibao 已提交
411

W
wangguibao 已提交
412
    std::string fluid_model_data_path = conf.dnn_model_path();
413 414 415
    predictor::InferEngineCreationParams new_params(params);
    new_params.set_path(fluid_model_data_path);
    int ret = load_fluid_model(new_params);
W
wangguibao 已提交
416 417 418
    if (ret < 0) {
      LOG(ERROR) << "fail to load fluid model.";
      return -1;
W
wangguibao 已提交
419
    }
W
wangguibao 已提交
420 421 422 423 424 425 426 427 428 429 430 431
    const char* sigmoid_w_file = conf.sigmoid_w_file().c_str();
    const char* sigmoid_b_file = conf.sigmoid_b_file().c_str();
    float exp_max = conf.exp_max_input();
    float exp_min = conf.exp_min_input();
    _core->_sigmoid_core.reset(new SigmoidModel);
    LOG(INFO) << "create sigmoid core[" << _core->_sigmoid_core.get()
              << "], use count[" << _core->_sigmoid_core.use_count() << "].";
    ret = _core->_sigmoid_core->load(
        sigmoid_w_file, sigmoid_b_file, exp_max, exp_min);
    if (ret < 0) {
      LOG(ERROR) << "fail to load sigmoid model.";
      return -1;
W
wangguibao 已提交
432
    }
W
wangguibao 已提交
433 434 435 436 437 438 439 440 441
    return 0;
  }

  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->_fluid_core->Run(
            *(std::vector<paddle::PaddleTensor>*)in_data,
            (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
W
wangguibao 已提交
442 443
    }

W
wangguibao 已提交
444 445
    return true;
  }
W
wangguibao 已提交
446

W
wangguibao 已提交
447 448 449 450
  virtual int clone(SigmoidFluidModel* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
W
wangguibao 已提交
451
    }
W
wangguibao 已提交
452 453 454 455 456 457 458 459 460 461 462 463
    _core = origin_core->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    LOG(INFO) << "clone sigmoid core[" << _core->_sigmoid_core.get()
              << "] use count[" << _core->_sigmoid_core.use_count() << "].";
    return 0;
  }

  virtual SigmoidFluidModel* get() { return _core.get(); }

464 465
  virtual int load_fluid_model(
      const predictor::InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
466

W
wangguibao 已提交
467 468 469 470 471 472
  int softmax(float x, double& o) {  // NOLINT
    return _core->_sigmoid_core->softmax(x, o);
  }

 protected:
  std::unique_ptr<SigmoidFluidModel> _core;
W
wangguibao 已提交
473 474 475
};

class FluidCpuNativeDirWithSigmoidCore : public FluidCpuWithSigmoidCore {
W
wangguibao 已提交
476
 public:
477 478
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
479 480 481 482 483 484 485 486 487 488
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
489
    native_config.fraction_of_gpu_memory = 0;
W
wangguibao 已提交
490 491 492 493 494 495 496 497
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                      paddle::PaddleEngineKind::kNative>(
            native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
W
wangguibao 已提交
498 499
    }

W
wangguibao 已提交
500 501 502
    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
503 504 505
};

class FluidCpuAnalysisDirWithSigmoidCore : public FluidCpuWithSigmoidCore {
W
wangguibao 已提交
506
 public:
507 508
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
509 510 511 512
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
513
    }
W
wangguibao 已提交
514

W
wangguibao 已提交
515 516 517 518 519
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
520 521 522 523 524 525

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim(params.static_optimization(),
                                        params.force_update_static_cache());
    }

W
wangguibao 已提交
526 527
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
W
wangguibao 已提交
528
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
529 530 531 532 533 534 535 536
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
537 538
};

W
wangguibao 已提交
539 540 541
}  // namespace fluid_cpu
}  // namespace paddle_serving
}  // namespace baidu