pyserver.py 6.5 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import threading
import multiprocessing
import queue
import os
import paddle_serving_server
from paddle_serving_client import Client
from concurrent import futures
import grpc
import general_python_service_pb2
import general_python_service_pb2_grpc


class Channel(queue.Queue):
    def __init__(self, consumer=1, maxsize=0, timeout=0, batchsize=1):
        super(Channel, self).__init__(maxsize=maxsize)
        self._maxsize = maxsize
        self._timeout = timeout
        self._batchsize = batchsize
        self._consumer = consumer
        self._pushlock = threading.Lock()
        self._frontlock = threading.Lock()
        self._pushbatch = []
        self._frontbatch = None
        self._count = 0

    def push(self, item):
        with self._pushlock:
            if len(self._pushbatch) == batchsize:
                self.put(self._pushbatch, timeout=self._timeout)
                self._pushbatch = []
            self._pushbatch.append(item)

    def front(self):
        if consumer == 1:
            return self.get(timeout=self._timeout)
        with self._frontlock:
            if self._count == 0:
                self._frontbatch = self.get(timeout=self._timeout)
            self._count += 1
            if self._count == self._consumer:
                self._count = 0
            return self._frontbatch


class Op(object):
    def __init__(self,
                 inputs,
                 outputs,
                 server_model=None,
                 server_port=None,
                 device=None,
                 client_config=None,
                 server_name=None,
                 fetch_names=None):
        self._run = False
        self.set_inputs(inputs)
        self.set_outputs(outputs)
        if client_config is not None and \
                server_name is not None and \
                fetch_names is not None:
            self.set_client(client_config, server_name, fetch_names)
        self._server_model = server_model
        self._server_port = server_port
        self._device = deviceis

    def set_client(self, client_config, server_name, fetch_names):
        self._client = Client()
        self._client.load_client_config(client_config)
        self._client.connect([server_name])
        self._fetch_names = fetch_names

    def with_serving(self):
        return self._client is not None

    def get_inputs(self):
        return self._inputs

    def set_inputs(self, channels):
        if not isinstance(channels, list):
            raise TypeError('channels must be list type')
        self._inputs = channels

    def get_outputs(self):
        return self._outputs

    def set_outputs(self, channels):
        if not isinstance(channels, list):
            raise TypeError('channels must be list type')
        self._outputs = channels

    def preprocess(self, input_data):
        return input_data

    def midprocess(self, data):
        # data = preprocess(input), which is a dict
        fetch_map = self._client.predict(feed=data, fetch=self._fetch_names)
        return fetch_map

    def postprocess(self, output_data):
        return output_data

    def stop(self):
        self._run = False

    def start(self):
        self._run = True
        while self._run:
            input_data = []
            for channel in self._inputs:
                input_data.append(channel.front())
            data = self.preprocess(input_data)

            if self.with_serving():
                fetch_map = self.midprocess(data)
                output_data = self.postprocess(fetch_map)
            else:
                output_data = self.postprocess(data)

            for channel in self._outputs:
                channel.push(output_data)


class GeneralPythonService(
        general_python_service_pb2_grpc.GeneralPythonService):
    def __init__(self, channel):
        self._channel = channel

    def Request(self, request, context):
        pass

    def Response(self, request, context):
        pass


class PyServer(object):
    def __init__(self):
        self._channels = []
        self._ops = []
        self._op_threads = []
        self._port = None
        self._worker_num = None

    def add_channel(self, channel):
        self._channels.append(channel)

    def add_op(self, op):
        slef._ops.append(op)

    def gen_desc(self):
        pass

    def prepare_server(self, port, worker_num):
        self._port = port
        self._worker_num = worker_num
        self.gen_desc()

    def run_server(self):
        inputs = []
        outputs = []
        for op in self._ops:
            inputs += op.get_inputs()
            outputs += op.get_outputs()
            if op.with_serving():
                self.prepare_serving(op)
            th = multiprocessing.Process(target=op.start, args=(op, ))
            th.start()
            self._op_threads.append(th)

        input_channel = []
        for channel in inputs:
            if channel not in outputs:
                input_channel.append(channel)
        if len(input_channel) != 1:
            raise Exception("input_channel more than 1 or no input_channel")

        server = grpc.server(
            futures.ThreadPoolExecutor(max_workers=self._worker_num))
        general_python_service_pb2_grpc.add_GeneralPythonService_to_server(
            GeneralPythonService(input_channel[0]), server)
        server.start()
        try:
            for th in self._op_threads:
                th.join()
        except KeyboardInterrupt:
            server.stop(0)

    def prepare_serving(self, op):
        model_path = op._server_model
        port = op._server_port
        device = op._device

        # run a server (not in PyServing)
        if device == "cpu":
            cmd = "python -m paddle_serving_server.serve --model {} --thread 4 --port {} &>/dev/null &".format(
                model_path, port)
        else:
            cmd = "python -m paddle_serving_server_gpu.serve --model {} --thread 4 --port {} &>/dev/null &".format(
                model_path, port)
        os.system(cmd)