benchmark_batch.py 2.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from __future__ import unicode_literals, absolute_import
import os
import sys
import time
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import requests
import json
import criteo_reader as criteo

args = benchmark_args()


def single_func(idx, resource):
    batch = 1
    buf_size = 100
    dataset = criteo.CriteoDataset()
    dataset.setup(1000001)
    test_filelists = [
        "./raw_data/part-%d" % x for x in range(len(os.listdir("./raw_data")))
    ]
    reader = dataset.infer_reader(test_filelists[len(test_filelists) - 40:],
                                  batch, buf_size)
    if args.request == "rpc":
        fetch = ["prob"]
        client = Client()
        client.load_client_config(args.model)
46 47 48
        client.add_variant(
            "var1", [resource["endpoint"][idx % len(resource["endpoint"])]], 50)
        client.connect()
M
MRXLT 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

        start = time.time()
        for i in range(1000):
            if args.batch_size >= 1:
                feed_batch = []
                for bi in range(args.batch_size):
                    feed_dict = {}
                    data = reader().next()
                    for i in range(1, 27):
                        feed_dict["sparse_{}".format(i - 1)] = data[0][i]
                    feed_batch.append(feed_dict)
                result = client.batch_predict(
                    feed_batch=feed_batch, fetch=fetch)
            else:
                print("unsupport batch size {}".format(args.batch_size))

    elif args.request == "http":
        raise ("no batch predict for http")
    end = time.time()
    return [[end - start]]


if __name__ == '__main__':
    multi_thread_runner = MultiThreadRunner()
    endpoint_list = ["127.0.0.1:9292"]
    #endpoint_list = endpoint_list + endpoint_list + endpoint_list
    result = multi_thread_runner.run(single_func, args.thread,
                                     {"endpoint": endpoint_list})
    #result = single_func(0, {"endpoint": endpoint_list})
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
    print("average total cost {} s.".format(avg_cost))