infer.h 35.1 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#ifndef BAIDU_PADDLE_SERVING_PREDICTOR_INFER_H
#define BAIDU_PADDLE_SERVING_PREDICTOR_INFER_H

#include "common/inner_common.h"
#include "framework/infer_data.h"
#include "framework/factory.h"
#include "framework/bsf.h"

namespace baidu {
namespace paddle_serving {
namespace predictor {

class InferEngine {
public:

    virtual ~InferEngine() {}

    virtual int proc_initialize(const comcfg::ConfigUnit& conf, bool version) {
        return proc_initialize_impl(conf, version);
    }
    virtual int proc_finalize() {
        return proc_finalize_impl();
    }
    virtual int thrd_initialize() {
        return thrd_initialize_impl();
    }
    virtual int thrd_clear() {
        return thrd_clear_impl();
    }
    virtual int thrd_finalize() {
        return thrd_finalize_impl();
    }
    virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
        return infer_impl1(in, out, batch_size);
    }

    virtual int reload() = 0;

    virtual uint64_t version() const = 0;

    // begin: framework inner call
    virtual int proc_initialize_impl(
            const comcfg::ConfigUnit& conf, bool version) = 0;
    virtual int thrd_initialize_impl() = 0;
    virtual int thrd_finalize_impl() = 0;
    virtual int thrd_clear_impl() = 0;
    virtual int proc_finalize_impl() = 0;
    virtual int infer_impl1(
            const void* in, void* out, uint32_t batch_size = -1) = 0;
    virtual int infer_impl2(const BatchTensor& in, BatchTensor& out) = 0;
    // end: framework inner call
};

class ReloadableInferEngine : public InferEngine {
public:
    virtual ~ReloadableInferEngine() {}

    union last_check_status {
        time_t last_timestamp;
        uint64_t last_md5sum;
        uint64_t last_revision;
    };

    typedef im::bsf::Task<Tensor, Tensor> TaskT;

    virtual int load(const std::string& data_path) = 0;

    int proc_initialize_impl(const comcfg::ConfigUnit& conf, bool version) {
        _reload_tag_file = conf["ReloadableMeta"].to_cstr();
        _reload_mode_tag = conf["ReloadableType"].to_cstr();
        _model_data_path = conf["ModelDataPath"].to_cstr();
        _infer_thread_num = conf["RuntimeThreadNum"].to_uint32();
        _infer_batch_size = conf["BatchInferSize"].to_uint32();
        _infer_batch_align = conf["EnableBatchAlign"].to_uint32();
        if (!check_need_reload() || load(_model_data_path) != 0) {
            LOG(FATAL) << "Failed load model_data_path" << _model_data_path;
            return -1;
        }

        if (parse_version_info(conf, version) != 0) {
            LOG(FATAL) << "Failed parse version info";
            return -1;
        }

        LOG(WARNING) << "Succ load model_data_path" << _model_data_path;
        return 0;
    }

    int proc_initialize(const comcfg::ConfigUnit& conf, bool version) {
        if (proc_initialize_impl(conf, version) != 0) {
            LOG(FATAL) << "Failed proc initialize impl";
            return -1;
        }

        // init bsf framework
        if (_infer_thread_num <= 0) {
            return 0;
        }

        im::bsf::TaskExecutor<TaskT>::instance()->set_thread_init_fn(
                boost::bind(&InferEngine::thrd_initialize_impl, this));
        im::bsf::TaskExecutor<TaskT>::instance()->set_thread_reset_fn(
                boost::bind(&InferEngine::thrd_clear_impl, this));
        im::bsf::TaskExecutor<TaskT>::instance()->set_thread_callback_fn(
                boost::bind(&InferEngine::infer_impl2, this, _1, _2));
        im::bsf::TaskExecutor<TaskT>::instance()->set_batch_size(_infer_batch_size);
        im::bsf::TaskExecutor<TaskT>::instance()->set_batch_align(_infer_batch_align);
        if (im::bsf::TaskExecutor<TaskT>::instance()->start(_infer_thread_num)
                != 0) {
            LOG(FATAL) << "Failed start bsf executor, threads:" << _infer_thread_num;
            return -1;
        }

        LOG(WARNING) << "Enable batch schedule framework, thread_num:"
            << _infer_thread_num << ", batch_size:" << _infer_batch_size
            << ", enable_batch_align:" << _infer_batch_align;

        return 0;
    }

    int infer(const void* in, void* out, uint32_t batch_size = -1) {
        if (_infer_thread_num <= 0) {
            return infer_impl1(in, out, batch_size);
        }

        im::bsf::TaskManager<Tensor, Tensor> task_manager;
        task_manager.schedule(*(const BatchTensor*)in, *(BatchTensor*)out);
        task_manager.wait();
        return 0;
    }

    int thrd_initialize() {
        if (_infer_thread_num > 0) {
            return 0;
        }

        return thrd_initialize_impl();
    }

    int thrd_clear() {
        if (_infer_thread_num > 0) {
            return 0;
        }

        return thrd_clear_impl();
    }

    int proc_finalize() {
        if (proc_finalize_impl() != 0) {
            LOG(FATAL) << "Failed proc finalize impl";
            return -1;
        }

        if (_infer_thread_num > 0) {
            im::bsf::TaskExecutor<TaskT>::instance()->stop();
        }

        return 0;
    }

    int reload() {
        if (check_need_reload()) {
            LOG(WARNING) << "begin reload model[" << _model_data_path << "].";
            return load(_model_data_path);
        }
        return 0;
    }

    uint64_t version() const {
        return _version; 
    }

    uint32_t thread_num() const {
        return _infer_thread_num;
    }

private:
    int parse_version_info(const comcfg::ConfigUnit& config, bool version) {
        try {
            std::string version_file = config["VersionFile"].to_cstr();
            std::string version_type = config["VersionType"].to_cstr();
            
            if (version_type == "abacus_version") {
                if (parse_abacus_version(version_file) != 0) {
                    LOG(FATAL) 
                        << "Failed parse abacus version: " << version_file;
                    return -1;
                }
            } else if (version_type == "corece_uint64") {
                if (parse_corece_uint64(version_file) != 0) {
                    LOG(FATAL) 
                        << "Failed parse corece_uint64: " << version_file;
                    return -1;
                }
            } else {
                LOG(FATAL) << "Not supported version_type: " << version_type;
                return -1;
            }
        } catch (comcfg::ConfigException e) { // no version file
            if (version) {
                LOG(FATAL) << "Cannot parse version engine, err:" 
                    << e.what();
                return -1;
            }

            LOG(WARNING) << "Consistency with non-versioned configure";
            _version = uint64_t(-1);
        }
        return 0;
    }

    int parse_abacus_version(const std::string& version_file) {
        FILE* fp = fopen(version_file.c_str(), "r");
        if (!fp) {
            LOG(FATAL) << "Failed open version file:" << version_file; 
            return -1;
        }

        bool has_parsed = false;
        char buffer[1024] = {0};
        while (fgets(buffer, sizeof(buffer), fp)) {
            char* begin = NULL;
            if (strncmp(buffer, "version:", 8) == 0 ||
                    strncmp(buffer, "Version:", 8) == 0) {
                begin = buffer + 8;
            } else if (strncmp(buffer, "version :", 9) == 0 || 
                    strncmp(buffer, "Version :", 9) == 0) {
                begin = buffer + 9;
            } else {
                LOG(WARNING) << "Not version line: " << buffer; 
                continue;
            }

            std::string vstr = begin;
            boost::algorithm::trim_if(
                    vstr, boost::algorithm::is_any_of("\n\r "));
            char* endptr = NULL;
            _version = strtoull(vstr.c_str(), &endptr, 10);
            if (endptr == vstr.c_str()) {
                LOG(FATAL) 
                    << "Invalid version: [" << buffer << "], end: [" 
                    << endptr << "]" << ", vstr: [" << vstr << "]";
                fclose(fp);
                return -1;
            }
            has_parsed = true;
        }

        if (!has_parsed) {
            LOG(FATAL) << "Failed parse abacus version: " << version_file; 
            fclose(fp);
            return -1;
        }

        LOG(WARNING) << "Succ parse abacus version: " << _version 
            << " from: " << version_file;
        fclose(fp);
        return 0;
    }

    int parse_corece_uint64(const std::string& version_file) {
        FILE* fp = fopen(version_file.c_str(), "r");
        if (!fp) {
            LOG(FATAL) << "Failed open version file:" << version_file; 
            return -1;
        }

        bool has_parsed = false;
        char buffer[1024] = {0};
        if (fgets(buffer, sizeof(buffer), fp)) {
            char* endptr = NULL;
            _version = strtoull(buffer, &endptr, 10);
            if (endptr == buffer) {
                LOG(FATAL) << "Invalid version: " << buffer;
                fclose(fp);
                return -1;
            }
            has_parsed = true;
        }

        if (!has_parsed) {
            LOG(FATAL) << "Failed parse abacus version: " << version_file; 
            fclose(fp);
            return -1;
        }

        LOG(WARNING) << "Succ parse corece version: " << _version 
            << " from: " << version_file;
        fclose(fp);
        return 0; 
    }

    bool check_need_reload() {
        if (_reload_mode_tag == "timestamp_ne") {
            return check_timestamp_ne();
        } else if (_reload_mode_tag == "timestamp_gt") {
            return check_timestamp_gt();
        } else if (_reload_mode_tag == "md5sum") {
            return check_md5sum();
        } else if (_reload_mode_tag == "revision") {
            return check_revision();
        } else if (_reload_mode_tag == "none") {
            return false;
        } else {
            LOG(FATAL) << "Not support check type: "
                << _reload_mode_tag;
            return false;
        }
    }

    bool check_timestamp_ne() {
        struct stat st;
        if (stat(_reload_tag_file.c_str(), &st) != 0) {
            LOG(FATAL) << "Failed stat config file:"
                << _reload_tag_file;
            return false;
        }

        if ((st.st_mode & S_IFREG) &&
                st.st_mtime != _last_status.last_timestamp) {
            _last_status.last_timestamp = st.st_mtime;
            return true;
        }

        return false;
    }

    bool check_timestamp_gt() {
        struct stat st;
        if (stat(_reload_tag_file.c_str(), &st) != 0) {
            LOG(FATAL) << "Failed stat config file:"
                << _reload_tag_file;
            return false;
        }

        if ((st.st_mode & S_IFREG) &&
                st.st_mtime > _last_status.last_timestamp) {
            _last_status.last_timestamp = st.st_mtime;
            return true;
        }

        return false;
    }

    bool check_md5sum() {
        return false;
    }

    bool check_revision() {
        return false;
    }

protected:
    std::string _model_data_path;

private:
    std::string _reload_tag_file;
    std::string _reload_mode_tag;
    last_check_status _last_status;
    uint32_t _infer_thread_num;
    uint32_t _infer_batch_size;
    bool _infer_batch_align;
    uint64_t _version;
};

template<typename EngineCore>
struct ModelData {
    ModelData() : current_idx(1) {
        cores[0] = NULL;
        cores[1] = NULL;
    }

    ~ModelData() {
        delete cores[0];
        delete cores[1];
    }

    EngineCore* cores[2];
    uint32_t current_idx;
}; 

template<typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
public:
    virtual ~DBReloadableInferEngine() {}

    int proc_initialize(const comcfg::ConfigUnit& conf, bool version) {
        THREAD_KEY_CREATE(&_skey, NULL);
        THREAD_MUTEX_INIT(&_mutex, NULL);
        return ReloadableInferEngine::proc_initialize(conf, version);
    }

    virtual int load(const std::string& model_data_dir) {
        if (_reload_vec.empty()) {
            return 0;
        }

        for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
            if (load_data(_reload_vec[ti], model_data_dir) != 0) {
                LOG(FATAL) << "Failed reload engine model: " << ti;
                return -1;
            }
        }
        
        LOG(WARNING) << "Succ load engine, path: " << model_data_dir;

        return 0;
    }

    int load_data(ModelData<EngineCore>* md, const std::string& data_path) {
        uint32_t next_idx = (md->current_idx + 1) % 2;
        if (md->cores[next_idx]) {
            delete md->cores[next_idx];
        }

        md->cores[next_idx] = new (std::nothrow) EngineCore;
        if (!md->cores[next_idx]
                || md->cores[next_idx]->create(data_path) != 0) {
            LOG(FATAL) << "Failed create model, path: " << data_path;
            return -1;
        }
        md->current_idx = next_idx;
        return 0;
    }

    virtual int thrd_initialize_impl() {
        // memory pool to be inited in non-serving-threads
        if (MempoolWrapper::instance().thread_initialize() != 0) {
            LOG(FATAL) << "Failed thread initialize mempool";
            return -1;
        }
        
        ModelData<EngineCore>* md = new(std::nothrow) ModelData<EngineCore>;
        if (!md || load_data(md, _model_data_path) != 0) {
            LOG(FATAL) << "Failed create thread data from " << _model_data_path;
            return -1;
        }

        THREAD_SETSPECIFIC(_skey, md);
        im::bsf::AutoMutex lock(_mutex);
        _reload_vec.push_back(md);
        return 0;
    }

    int thrd_clear_impl() {
        // for non-serving-threads
        if (MempoolWrapper::instance().thread_clear() != 0) {
            LOG(FATAL) << "Failed thread clear mempool";
            return -1;
        }
        return 0;
    }

    int thrd_finalize_impl() {
        return 0;
    }

    int proc_finalize_impl() {
        THREAD_KEY_DELETE(_skey);
        THREAD_MUTEX_DESTROY(&_mutex);
        return 0;
    }

    EngineCore* get_core() {
        ModelData<EngineCore>* md = (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
        if (!md) {
            LOG(FATAL) << "Failed get thread specific data";
            return NULL;
        }
        return md->cores[md->current_idx];
    }

protected:
    THREAD_KEY_T _skey;
    THREAD_MUTEX_T _mutex;
    std::vector<ModelData<EngineCore>*> _reload_vec;
private:
};

// 多个EngineCore共用同一份模型数据
template<typename EngineCore>
class CloneDBReloadableInferEngine : public DBReloadableInferEngine<EngineCore> {
public:
    virtual ~CloneDBReloadableInferEngine() {}

    virtual int proc_initialize(const comcfg::ConfigUnit& conf, bool version) {
        _pd = new (std::nothrow) ModelData<EngineCore>;
        if (!_pd) {
            LOG(FATAL) << "Failed to allocate for ProcData";
            return -1;
        }
        return DBReloadableInferEngine<EngineCore>::proc_initialize(
                conf, version);
    }

    virtual int load(const std::string& model_data_dir) {
        // 加载进程级模型数据
        if (!_pd || DBReloadableInferEngine<EngineCore>::load_data(
                    _pd, model_data_dir) != 0) {
            LOG(FATAL) 
                << "Failed to create common model from [" 
                << model_data_dir << "].";
            return -1;
        }
        LOG(WARNING) 
            << "Succ load common model[" << _pd->cores[_pd->current_idx] 
            << "], path[" << model_data_dir << "].";

        if (DBReloadableInferEngine<EngineCore>::_reload_vec.empty()) {
            return 0;
        }

        for (uint32_t ti = 0; ti < DBReloadableInferEngine<EngineCore>::_reload_vec.size(); ++ti) {
            if (load_data(DBReloadableInferEngine<EngineCore>::_reload_vec[ti],
                        _pd->cores[_pd->current_idx]) != 0) {
                LOG(FATAL) << "Failed reload engine model: " << ti;
                return -1;
            }
        }
        
        LOG(WARNING) << "Succ load clone model, path[" << model_data_dir << "]";

        return 0;
    }

    // 加载线程级对象,多个线程级对象共用pd_core的模型数据
    int load_data(
            ModelData<EngineCore>* td,
            EngineCore* pd_core) {
        uint32_t next_idx = (td->current_idx + 1) % 2;
        if (td->cores[next_idx]) {
            delete td->cores[next_idx];
        }

        td->cores[next_idx] = new (std::nothrow) EngineCore;
        if (!td->cores[next_idx]
                || td->cores[next_idx]->clone(pd_core->get()) != 0) {
            LOG(FATAL) << "Failed clone model from pd_core[ " << pd_core
                    << "], idx[" << next_idx << "]";
            return -1;
        }
        td->current_idx = next_idx;
        LOG(WARNING) 
            << "td_core[" << td->cores[td->current_idx] 
            << "] clone model from pd_core["
            << pd_core << "] succ, cur_idx[" << td->current_idx << "].";
        return 0;
    }

    virtual int thrd_initialize_impl() {
        // memory pool to be inited in non-serving-threads
        if (MempoolWrapper::instance().thread_initialize() != 0) {
            LOG(FATAL) << "Failed thread initialize mempool";
            return -1;
        }
        
        ModelData<EngineCore>* md = new(std::nothrow) ModelData<EngineCore>;
        if (!md || load_data(md, _pd->cores[_pd->current_idx]) != 0) {
            LOG(FATAL) << "Failed clone thread data, origin_core["
                    << _pd->cores[_pd->current_idx] << "].";
            return -1;
        }

        THREAD_SETSPECIFIC(DBReloadableInferEngine<EngineCore>::_skey, md);
        im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
        DBReloadableInferEngine<EngineCore>::_reload_vec.push_back(md);
        return 0;
    }

protected:
    ModelData<EngineCore>* _pd; // 进程级EngineCore,多个线程级EngineCore共用该对象的模型数据
};

template<typename FluidFamilyCore>
class FluidInferEngine : public DBReloadableInferEngine<FluidFamilyCore> {
public:
    FluidInferEngine() {}
    ~FluidInferEngine() {}
    
    int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
        FluidFamilyCore* core
            = DBReloadableInferEngine<FluidFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get fluid core in infer_impl()";
            return -1;
        }
        
        if (!core->Run(in, out)) {
            LOG(FATAL) << "Failed run fluid family core";
            return -1;
        }
        return 0;
    }

    int infer_impl2(const BatchTensor& in, BatchTensor& out) {
        return infer_impl1(&in, &out);
    }
};

template<typename TensorrtFamilyCore>
class TensorrtInferEngine : public DBReloadableInferEngine<TensorrtFamilyCore> {
public:
    TensorrtInferEngine() {}
    ~TensorrtInferEngine() {}

    int infer_impl1(const void* in, void* out, uint32_t batch_size) {
        TensorrtFamilyCore* core
            = DBReloadableInferEngine<TensorrtFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get fluid core in infer_impl()";
            return -1;
        }

        if (!core->Run(in, out, batch_size)) {
            LOG(FATAL) << "Failed run fluid family core";
            return -1;
        }
        return 0;
    }

    int infer_impl2(const BatchTensor& in, BatchTensor& out) {
        LOG(FATAL) << "Tensortrt donot supports infer_impl2 yet!";
        return -1;
    }
};

template<typename AbacusFamilyCore>
class AbacusInferEngine : public CloneDBReloadableInferEngine<AbacusFamilyCore> {
public:
    AbacusInferEngine() {}
    ~AbacusInferEngine() {}

    int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
        LOG(FATAL) << "Abacus dnn engine must use predict interface";
        return -1;
    }

    int infer_impl2(const BatchTensor& in, BatchTensor& out) {
        LOG(FATAL) << "Abacus dnn engine must use predict interface";
        return -1;
    }

    // Abacus special interface
    int predict(uint32_t ins_num) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in predict()";
            return -1;
        }

        return core->predict(ins_num);
    }
    int set_use_fpga(bool use_fpga) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in predict()";
            return -1;
        }

        return core->set_use_fpga(use_fpga);
    }
    int debug() {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in debug()";
            return -1;
        }
        return core->debug();
    }

    int set_search_id(uint64_t sid) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in set_serach_id()";
            return -1;
        }
        return core->set_search_id(sid);
    }

    int set_hidden_layer_dim(uint32_t dim) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in set_layer_dim()";
            return -1;
        }
        return core->set_hidden_layer_dim(dim);
    }

    int get_input(
            uint32_t ins_idx, uint32_t* fea_num, void* in) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in get_input()";
            return -1;
        }
        return core->get_input(ins_idx, fea_num, in);
    }

    int get_layer_value(const std::string& name,
            uint32_t ins_num, uint32_t fea_dim, void* out) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in get_layer_value()";
            return -1;
        }
        return core->get_layer_value(name, ins_num, fea_dim, out);
    }
    
    void set_position_idx(void* input, uint64_t fea, uint32_t ins_idx) {
        AbacusFamilyCore* core
                = CloneDBReloadableInferEngine<AbacusFamilyCore>::get_core();
        if (!core || !core->get()) {
            LOG(FATAL) << "Failed get abacus core in set_position_idx()";
            return;
        }
        core->set_position_idx(input, fea, ins_idx);
        return;
    }
};

template<typename PaddleV2FamilyCore>
class PaddleV2InferEngine : public CloneDBReloadableInferEngine<PaddleV2FamilyCore> {
public:
    PaddleV2InferEngine() {}
    ~PaddleV2InferEngine() {}
    
    int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
        LOG(FATAL) << "Paddle V2 engine must use predict interface";
        return -1;
    }

    int infer_impl2(const BatchTensor& in, BatchTensor& out) {
        LOG(FATAL) << "Paddle V2 engine must use predict interface";
        return -1;
    }
};

typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
public:
    VersionedInferEngine() {
        _versions.clear();
    }
    ~VersionedInferEngine() {}

    int proc_initialize(const comcfg::ConfigUnit& conf) {
        size_t version_num = conf["Version"].size();
        for (size_t vi = 0; vi < version_num; ++vi) {
            if (proc_initialize(conf["Version"][vi], true) != 0) {
                LOG(FATAL) << "Failed proc initialize version: " 
                    << vi << ", model: " << conf["Name"].to_cstr();
                return -1;
            }
        }

        if (version_num == 0) {
            if (proc_initialize(conf, false) != 0) {
                LOG(FATAL) << "Failed proc intialize engine: " 
                    << conf["Name"].to_cstr();
                return -1;
            }
        }
        LOG(WARNING) 
            << "Succ proc initialize engine: " << conf["Name"].to_cstr();
        return 0;
    }

    int proc_initialize(const comcfg::ConfigUnit& conf, bool version) {
        std::string engine_type = conf["Type"].to_cstr();
        InferEngine* engine
            = StaticInferFactory::instance().generate_object(
                    engine_type);
        if (!engine) {
            LOG(FATAL) << "Failed generate engine with type:"
                << engine_type;
            return -1;
        }

        if (engine->proc_initialize(conf, version) != 0) {
            LOG(FATAL) << "Failed initialize engine, type:"
                << engine_type;
            return -1;
        }

        auto r = _versions.insert(std::make_pair(engine->version(), engine));
        if (!r.second) {
            LOG(FATAL) << "Failed insert item: " << engine->version() 
                << ", type: " << engine_type;
            return -1;
        }
        LOG(WARNING) 
            << "Succ proc initialize version engine: " << engine->version();
        return 0;
    }

    int proc_finalize() {
        for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
            if (iter->second->proc_finalize() != 0) {
                LOG(FATAL) << "Failed proc finalize version engine: " <<
                    iter->first;
            }
            LOG(WARNING) 
                << "Succ proc finalize version engine: " << iter->first;
        }
        return 0;
    }

    int thrd_initialize() {
        for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
            if (iter->second->thrd_initialize() != 0) {
                LOG(FATAL) << "Failed thrd initialize version engine: " <<
                    iter->first;
                return -1;
            }
            LOG(WARNING) 
                << "Succ thrd initialize version engine: " << iter->first;
        }
        return 0;
    }

    int thrd_clear() {
        for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
            if (iter->second->thrd_clear() != 0) {
                LOG(FATAL) << "Failed thrd clear version engine: " << 
                    iter->first;
                return -1;
            }
            LOG(DEBUG) << "Succ thrd clear version engine: " << iter->first;
        }
        return 0;
    }

    int thrd_finalize() {
        for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
            if (iter->second->thrd_finalize() != 0) {
                LOG(FATAL) << "Failed thrd finalize version engine: " << 
                    iter->first;
                return -1;
            }
            LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
        }
        return 0;
    }

    int reload() {
        for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
            if (iter->second->reload() != 0) {
                LOG(FATAL) << "Failed reload version engine: " << 
                    iter->first;
                return -1;
            }
            LOG(WARNING) << "Succ reload version engine: " << iter->first;
        }
        return 0; 
    }

    uint64_t version() const {
        InferEngine* engine = default_engine();
        if (engine) {
            return engine->version();
        } else {
            return uint64_t(-1);
        }
    }

    // inference interface
    InferEngine* default_engine() const {
        if (_versions.size() != 1) {
            LOG(FATAL) << "Ambiguous default engine version:" 
                << _versions.size();
            return NULL;
        }

        return _versions.begin()->second;
    }
    
    int infer(const void* in, void* out, uint32_t batch_size) {
        InferEngine* engine = default_engine();
        if (!engine) {
            LOG(WARNING) << "fail to get default engine";
            return NULL;
        }
        return engine->infer(in, out, batch_size);
    }

    template<typename T>
    T* get_core() {
        InferEngine* engine = default_engine();
        if (!engine) {
            LOG(WARNING) << "fail to get core";
            return NULL;
        }
        auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
        if (db_engine) {
            return db_engine->get_core();
        }
        LOG(WARNING) << "fail to get core";
        return NULL;
    }

    // versioned inference interface
    int infer(
            const void* in, void* out, uint32_t batch_size, uint64_t version) {
        auto iter = _versions.find(version);
        if (iter == _versions.end()) {
            LOG(FATAL) << "Not found version engine: " << version;
            return -1;
        }

        return iter->second->infer(in, out, batch_size);
    }
    
    template<typename T>
    T* get_core(uint64_t version) {
        auto iter = _versions.find(version);
        if (iter == _versions.end()) {
            LOG(FATAL) << "Not found version engine: "  << version;
            return NULL;
        }

        auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
        if (db_engine) {
            return db_engine->get_core();
        }
        LOG(WARNING) << "fail to get core for " << version;
        return NULL;
    }

    // --
    int proc_initialize_impl(const comcfg::ConfigUnit& conf, bool) { return -1; }
    int thrd_initialize_impl() { return -1; }
    int thrd_finalize_impl() { return -1; }
    int thrd_clear_impl() { return -1; }
    int proc_finalize_impl() { return -1; }
    int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) { return -1; }
    int infer_impl2(const BatchTensor& in, BatchTensor& out) { return -1; }

private:
    boost::unordered_map<uint64_t, InferEngine*> _versions;
};

class InferManager {
public:
    static InferManager& instance() {
        static InferManager ins;
        return ins;
    }

    int proc_initialize(const char* path, const char* file) {
        comcfg::Configure conf;
        if (conf.load(path, file) != 0) {
            LOG(FATAL) << "failed load infer config, path:"
                << path << "/" << file;
            return -1;
        }

        size_t engine_num = conf["Engine"].size();
        for (size_t ei = 0; ei < engine_num; ++ei) {
            std::string engine_name = conf["Engine"][ei]["Name"].to_cstr();
            VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
            if (!engine) {
                LOG(FATAL) << "Failed generate versioned engine: " << engine_name;
                return -1;
            }

            if (engine->proc_initialize(conf["Engine"][ei]) != 0) {
                LOG(FATAL) << "Failed initialize version engine, name:"
                    << engine_name;
                return -1;
            }

            auto r = _map.insert(std::make_pair(engine_name, engine));
            if (!r.second) {
                LOG(FATAL) << "Failed insert item: " << engine_name;
                return -1;
            }
            LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
        }

        return 0;
    }

    int thrd_initialize() {
        for (auto it = _map.begin(); it != _map.end(); ++it) {
            if (it->second->thrd_initialize() != 0) {
                LOG(FATAL) << "Failed thrd initialize engine, name: "
                    << it->first;
                return -1;
            }
            LOG(WARNING) << "Succ thrd initialize engine, name: "
                << it->first;
        }
        return 0;
    }

    int thrd_clear() {
        for (auto it = _map.begin(); it != _map.end(); ++it) {
            if (it->second->thrd_clear() != 0) {
                LOG(FATAL) << "Failed thrd clear engine, name: "
                    << it->first;
                return -1;
            }
        }
        return 0;
    }

    int reload() {
        for (auto it = _map.begin(); it != _map.end(); ++it) {
            if (it->second->reload() != 0) {
                LOG(FATAL) << "Failed reload engine, name: "
                    << it->first;
                return -1;
            }
        }
        return 0;
    }

    int thrd_finalize() {
        for (auto it = _map.begin(); it != _map.end(); ++it) {
            if (it->second->thrd_finalize() != 0) {
                LOG(FATAL) << "Failed thrd finalize engine, name: "
                    << it->first;
                return -1;
            }
            LOG(WARNING) << "Succ thrd finalize engine, name: "
                << it->first;
        }
        return 0;
    }

    int proc_finalize() {
        for (auto it = _map.begin(); it != _map.end(); ++it) {
            if (it->second->proc_finalize() != 0) {
                LOG(FATAL) << "Failed proc finalize engine, name: "
                    << it->first;
                return -1;
            }
            LOG(WARNING) << "Succ proc finalize engine, name: "
                << it->first;
        }
        return 0;
    }

    // Inference interface
    int infer(const char* model_name, const void* in, void* out, uint32_t batch_size = -1) {
        auto it = _map.find(model_name);
        if (it == _map.end()) {
            LOG(WARNING) << "Cannot find engine in map, model name:"
                << model_name;
            return -1;
        }
        return it->second->infer(in, out, batch_size);
    }

    template<typename T>
    T* get_core(const char* model_name) {
        auto it = _map.find(model_name);
        if (it == _map.end()) {
            LOG(WARNING) << "Cannot find engine in map, model name:"
                << model_name;
            return NULL;
        }
        auto infer_engine = dynamic_cast<DBReloadableInferEngine<T>*>(
                it->second->default_engine());
        if (infer_engine) {
            return infer_engine->get_core();
        }
        LOG(WARNING) << "fail to get core for " << model_name;
        return NULL;
    }

    // Versioned inference interface
    int infer(const char* model_name, const void* in, void* out, 
            uint32_t batch_size, uint64_t version) {
        auto it = _map.find(model_name);
        if (it == _map.end()) {
            LOG(WARNING) << "Cannot find engine in map, model name:"
                << model_name;
            return -1;
        }
        return it->second->infer(in, out, batch_size, version);
    }

    template<typename T>
    T* get_core(const char* model_name, uint64_t version) {
        auto it = _map.find(model_name);
        if (it == _map.end()) {
            LOG(WARNING) << "Cannot find engine in map, model name:"
                << model_name;
            return NULL;
        }
        return it->second->get_core<T>(version);
    }

    int query_version(const std::string& model, uint64_t& version) {
        auto it = _map.find(model);
        if (it == _map.end()) {
            LOG(WARNING) << "Cannot find engine in map, model name:" 
                << model;
            return -1;
        }
        auto infer_engine = it->second->default_engine();
        if (!infer_engine) {
            LOG(WARNING) << "Cannot get default engine for model:" 
                << model;
            return -1;
        }
        version = infer_engine->version();
        LOG(DEBUG) << "Succ get version: " << version << " for model: " 
            << model;
        return 0;
    }

private:
    boost::unordered_map<std::string, VersionedInferEngine*> _map;
};

} // predictor
} // paddle_serving
} // baidu

#endif // BAIDU_PADDLE_SERVING_PREDICTOR_INFER_H