__init__.py 7.1 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .serving_client import PredictorClient
16 17 18
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
G
guru4elephant 已提交
19 20
import time

G
guru4elephant 已提交
21 22 23
int_type = 0
float_type = 1

M
MRXLT 已提交
24

G
guru4elephant 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.endpoints = []

    def set_server_endpoints(self, endpoints):
        self.endpoints = endpoints

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
G
guru4elephant 已提交
39
        predictor_desc.weighted_random_render_conf.variant_weight_list = "100"
G
guru4elephant 已提交
40 41 42

        variant_desc = sdk.VariantConf()
        variant_desc.tag = "var1"
M
MRXLT 已提交
43 44
        variant_desc.naming_conf.cluster = "list://{}".format(":".join(
            self.endpoints))
G
guru4elephant 已提交
45 46 47 48 49 50 51 52 53 54 55 56

        predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
57

G
guru4elephant 已提交
58 59 60 61 62 63 64 65
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
66
        return self.sdk_desc
G
guru4elephant 已提交
67

G
guru4elephant 已提交
68 69 70 71 72 73 74

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
        self.feed_shapes_ = []
G
guru4elephant 已提交
75
        self.feed_types_ = {}
G
guru4elephant 已提交
76 77 78
        self.feed_names_to_idx_ = {}

    def load_client_config(self, path):
79 80 81 82 83
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
84 85 86 87
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
G
guru4elephant 已提交
88 89
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
90 91 92
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.feed_shapes_ = [var.shape for var in model_conf.feed_var]
G
guru4elephant 已提交
93
        self.feed_names_to_idx_ = {}
94 95 96
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
G
guru4elephant 已提交
97

G
guru4elephant 已提交
98 99
        return

G
guru4elephant 已提交
100
    def connect(self, endpoints):
G
guru4elephant 已提交
101 102 103
        # check whether current endpoint is available
        # init from client config
        # create predictor here
G
guru4elephant 已提交
104 105 106
        predictor_sdk = SDKConfig()
        predictor_sdk.set_server_endpoints(endpoints)
        sdk_desc = predictor_sdk.gen_desc()
M
MRXLT 已提交
107
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString())
G
guru4elephant 已提交
108 109 110 111 112 113 114

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

115
    def predict(self, feed={}, fetch=[], debug=False):
G
guru4elephant 已提交
116 117 118 119 120 121 122 123 124 125
        int_slot = []
        float_slot = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
        for key in feed:
            if key not in self.feed_names_:
                continue
            if self.feed_types_[key] == int_type:
                int_feed_names.append(key)
G
guru4elephant 已提交
126
                int_slot.append(feed[key])
G
guru4elephant 已提交
127 128
            elif self.feed_types_[key] == float_type:
                float_feed_names.append(key)
G
guru4elephant 已提交
129
                float_slot.append(feed[key])
G
guru4elephant 已提交
130 131 132 133 134 135

        for key in fetch:
            if key in self.fetch_names_:
                fetch_names.append(key)

        result = self.client_handle_.predict(
M
MRXLT 已提交
136 137
            float_slot, float_feed_names, int_slot, int_feed_names, fetch_names)

138 139 140
        # TODO(guru4elephant): the order of fetch var name should be consistent with
        #                      general_model_config, this is not friendly
        #                      In the future, we need make the number of fetched variable changable
G
guru4elephant 已提交
141 142 143
        result_map = {}
        for i, name in enumerate(fetch_names):
            result_map[name] = result[i]
M
MRXLT 已提交
144

145 146 147
        if debug:
            result_map["infer_time"] = result[-1][0]

G
guru4elephant 已提交
148 149
        return result_map

M
MRXLT 已提交
150
    def batch_predict(self, feed_batch=[], fetch=[]):
M
MRXLT 已提交
151 152 153 154 155
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
M
MRXLT 已提交
156
        counter = 0
M
MRXLT 已提交
157 158 159 160 161 162 163
        for feed in feed_batch:
            int_slot = []
            float_slot = []
            for key in feed:
                if key not in self.feed_names_:
                    continue
                if self.feed_types_[key] == int_type:
M
MRXLT 已提交
164 165
                    if counter == 0:
                        int_feed_names.append(key)
M
MRXLT 已提交
166 167
                    int_slot.append(feed[key])
                elif self.feed_types_[key] == float_type:
M
MRXLT 已提交
168 169
                    if counter == 0:
                        float_feed_names.append(key)
M
MRXLT 已提交
170
                    float_slot.append(feed[key])
M
MRXLT 已提交
171
            counter += 1
M
MRXLT 已提交
172 173 174 175 176 177 178
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

        for key in fetch:
            if key in self.fetch_names_:
                fetch_names.append(key)

M
MRXLT 已提交
179
        result_batch = self.client_handle_.batch_predict(
M
MRXLT 已提交
180
            float_slot_batch, float_feed_names, int_slot_batch, int_feed_names,
M
MRXLT 已提交
181
            fetch_names)
M
MRXLT 已提交
182 183 184 185 186 187 188 189 190

        result_map_batch = []
        for result in result_batch:
            result_map = {}
            for i, name in enumerate(fetch_names):
                result_map[name] = result[i]
            result_map_batch.append(result_map)

        return result_map_batch
191 192 193

    def release(self):
        self.client_handle_.destroy_predictor()