benchmark_batch.py 2.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from __future__ import unicode_literals, absolute_import
import os
import sys
import time
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import requests
import json
from image_reader import ImageReader

args = benchmark_args()


def single_func(idx, resource):
    if args.request == "rpc":
        reader = ImageReader()
        fetch = ["score"]
        client = Client()
        client.load_client_config(args.model)
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
        start = time.time()
        with open("./data/n01440764_10026.JPEG") as f:
            raw_img = f.read()
        for i in range(1000):
            if args.batch_size >= 1:
                feed_batch = []
                for bi in range(args.batch_size):
                    img = reader.process_image(raw_img)
                    img = img.reshape(-1)
                    feed_batch.append({"image": img})
                result = client.batch_predict(
                    feed_batch=feed_batch, fetch=fetch)
            else:
                print("unsupport batch size {}".format(args.batch_size))

    elif args.request == "http":
        raise ("no batch predict for http")
    end = time.time()
    return [[end - start]]


if __name__ == '__main__':
    multi_thread_runner = MultiThreadRunner()
    endpoint_list = ["127.0.0.1:9393"]
    #endpoint_list = endpoint_list + endpoint_list + endpoint_list
    result = multi_thread_runner.run(single_func, args.thread,
                                     {"endpoint": endpoint_list})
    #result = single_func(0, {"endpoint": endpoint_list})
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
    print("average total cost {} s.".format(avg_cost))