COMPILE.md 8.3 KB
Newer Older
J
Jiawei Wang 已提交
1
# How to compile PaddleServing
D
Dong Daxiang 已提交
2

J
Jiawei Wang 已提交
3 4 5
([简体中文](./COMPILE_CN.md)|English)

## Compilation environment requirements
B
barrierye 已提交
6

B
barrierye 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|            module            |              version              |
| :--------------------------: | :-------------------------------: |
|              OS              |             CentOS 7              |
|             gcc              |          4.8.5 and later          |
|           gcc-c++            |          4.8.5 and later          |
|             git              |          3.82 and later           |
|            cmake             |          3.2.0 and later          |
|            Python            |  2.7.2 and later / 3.6 and later  |
|              Go              |          1.9.2 and later          |
|             git              |         2.17.1 and later          |
|         glibc-static         |               2.17                |
|        openssl-devel         |              1.0.2k               |
|         bzip2-devel          |          1.0.6 and later          |
| python-devel / python3-devel | 2.7.5 and later / 3.6.8 and later |
|         sqlite-devel         |         3.7.17 and later          |
|           patchelf           |           0.9 and later           |
|           libXext            |               1.3.3               |
|            libSM             |               1.2.2               |
|          libXrender          |              0.9.10               |
D
Dong Daxiang 已提交
26

B
barrierye 已提交
27
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md).
B
barrierye 已提交
28

B
barrierye 已提交
29 30 31 32
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:

- Set `DPYTHON_INCLUDE_DIR` to `$PYTHONROOT/include/python3.6m/`
- Set  `DPYTHON_LIBRARIES` to `$PYTHONROOT/lib64/libpython3.6.so`
M
fix doc  
MRXLT 已提交
33
- Set `DPYTHON_EXECUTABLE` to `$PYTHONROOT/bin/python3.6`
B
barrierye 已提交
34

J
Jiawei Wang 已提交
35
## Get Code
D
Dong Daxiang 已提交
36 37 38

``` python
git clone https://github.com/PaddlePaddle/Serving
39
cd Serving && git submodule update --init --recursive
D
Dong Daxiang 已提交
40 41
```

B
barrierye 已提交
42 43


B
barrierye 已提交
44

J
Jiawei Wang 已提交
45
## PYTHONROOT Setting
D
Dong Daxiang 已提交
46

B
barrierye 已提交
47
```shell
J
Jiawei Wang 已提交
48
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT
D
Dong Daxiang 已提交
49 50 51
export PYTHONROOT=/usr/
```

B
barrierye 已提交
52 53
In the default centos7 image we provide, the Python path is `/usr/bin/python`. If you want to use our centos6 image, you need to set it to `export PYTHONROOT=/usr/local/python2.7/`.

B
barrierye 已提交
54 55 56 57 58 59 60 61 62 63


## Install Python dependencies

```shell
pip install -r python/requirements.txt
```

If Python3 is used, replace `pip` with `pip3`.

B
barriery 已提交
64
## GOPATH Setting
B
barrierye 已提交
65

B
barriery 已提交
66 67 68 69 70 71 72 73 74 75 76 77
The default GOPATH is `$HOME/go`, which you can set to other values.
```shell
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin
```

## Get go packages

```shell
go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway
go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger
go get -u github.com/golang/protobuf/protoc-gen-go
B
barriery 已提交
78
go get -u golang.org/x/net/context
B
barriery 已提交
79
```
B
barrierye 已提交
80

J
Jiawei Wang 已提交
81
## Compile Server
B
barrierye 已提交
82

J
Jiawei Wang 已提交
83
### Integrated CPU version paddle inference library
B
barrierye 已提交
84

D
Dong Daxiang 已提交
85
``` shell
B
barrierye 已提交
86
mkdir server-build-cpu && cd server-build-cpu
B
barrierye 已提交
87
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
D
Dong Daxiang 已提交
88 89 90
make -j10
```

J
Jiawei Wang 已提交
91
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
B
barrierye 已提交
92

J
Jiawei Wang 已提交
93
### Integrated GPU version paddle inference library
B
barrierye 已提交
94

D
Dong Daxiang 已提交
95
``` shell
B
barrierye 已提交
96
mkdir server-build-gpu && cd server-build-gpu
B
barrierye 已提交
97
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON ..
D
Dong Daxiang 已提交
98 99 100
make -j10
```

J
Jiawei Wang 已提交
101
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
102

B
barrierye 已提交
103
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
M
MRXLT 已提交
104

B
barrierye 已提交
105 106


J
Jiawei Wang 已提交
107
## Compile Client
D
Dong Daxiang 已提交
108 109

``` shell
B
barrierye 已提交
110
mkdir client-build && cd client-build
B
barrierye 已提交
111
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON ..
D
Dong Daxiang 已提交
112 113
make -j10
```
D
Dong Daxiang 已提交
114

J
Jiawei Wang 已提交
115
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
116

B
barrierye 已提交
117 118


J
Jiawei Wang 已提交
119
## Compile the App
B
barrierye 已提交
120 121

```bash
B
barrierye 已提交
122
mkdir app-build && cd app-build
123
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DAPP=ON ..
B
barrierye 已提交
124 125 126
make
```

B
barrierye 已提交
127 128


J
Jiawei Wang 已提交
129 130
## Install wheel package

B
barrierye 已提交
131
Regardless of the client, server or App part, after compiling, install the whl package in `python/dist/` in the temporary directory(`server-build-cpu`, `server-build-gpu`, `client-build`,`app-build`) of the compilation process.
B
barrierye 已提交
132

B
barrierye 已提交
133 134


J
Jiawei Wang 已提交
135
## Note
B
barrierye 已提交
136

J
Jiawei Wang 已提交
137
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
B
barrierye 已提交
138

139

B
barrierye 已提交
140

B
barrierye 已提交
141 142 143 144 145 146
## Verify

Please use the example under `python/examples` to verify.



J
Jiawei Wang 已提交
147
## CMake Option Description
B
barrierye 已提交
148

J
Jiawei Wang 已提交
149
| Compile Options  |                    Description             | Default |
B
barrierye 已提交
150 151 152 153 154 155 156 157 158 159 160
| :--------------: | :----------------------------------------: | :--: |
|     WITH_AVX     | Compile Paddle Serving with AVX intrinsics | OFF  |
|     WITH_MKL     |  Compile Paddle Serving with MKL support   | OFF  |
|     WITH_GPU     |   Compile Paddle Serving with NVIDIA GPU   | OFF  |
|    CUDNN_ROOT    |    Define CuDNN library and header path    |      |
|      CLIENT      |       Compile Paddle Serving Client        | OFF  |
|      SERVER      |       Compile Paddle Serving Server        | OFF  |
|       APP        |     Compile Paddle Serving App package     | OFF  |
| WITH_ELASTIC_CTR |        Compile ELASITC-CTR solution        | OFF  |
|       PACK       |              Compile for whl               | OFF  |

J
Jiawei Wang 已提交
161
### WITH_GPU Option
B
barrierye 已提交
162

J
Jiawei Wang 已提交
163
Paddle Serving supports prediction on the GPU through the PaddlePaddle inference library. The WITH_GPU option is used to detect basic libraries such as CUDA/CUDNN on the system. If an appropriate version is detected, the GPU Kernel will be compiled when PaddlePaddle is compiled.
B
barrierye 已提交
164

J
Jiawei Wang 已提交
165
To compile the Paddle Serving GPU version on bare metal, you need to install these basic libraries:
B
barrierye 已提交
166 167 168 169 170

- CUDA
- CuDNN
- NCCL2

J
Jiawei Wang 已提交
171 172 173 174
Note here:

1. The basic library versions such as CUDA/CUDNN installed on the system where Serving is compiled, needs to be compatible with the actual GPU device. For example, the Tesla V100 card requires at least CUDA 9.0. If the version of the basic library such as CUDA used during compilation is too low, the generated GPU code is not compatible with the actual hardware device, which will cause the Serving process to fail to start or serious problems such as coredump.
2. Install the CUDA driver compatible with the actual GPU device on the system running Paddle Serving, and install the basic library compatible with the CUDA/CuDNN version used during compilation. If the version of CUDA/CuDNN installed on the system running Paddle Serving is lower than the version used at compile time, it may cause some cuda function call failures and other problems.
B
barrierye 已提交
175 176


J
Jiawei Wang 已提交
177
The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
B
barrierye 已提交
178 179 180 181 182 183

|        |  CUDA   |          CuDNN           | NCCL2  |
| :----: | :-----: | :----------------------: | :----: |
| CUDA 8 | 8.0.61  | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4  |
| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 |

J
Jiawei Wang 已提交
184
### How to make the compiler detect the CuDNN library
B
barrierye 已提交
185

J
Jiawei Wang 已提交
186
Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN.
B
barrierye 已提交
187

J
Jiawei Wang 已提交
188
### How to make the compiler detect the nccl library
B
barrierye 已提交
189

J
Jiawei Wang 已提交
190
After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example):
B
barrierye 已提交
191 192 193 194 195 196

```shell
export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH
```