general_copy_op.cpp 3.4 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/general_copy_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int GeneralCopyOp::inference() {
  // reade request from client
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
B
barrierye 已提交
40 41 42
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
B
barrierye 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

  const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
  VLOG(2) << "precedent name: " << pre_name;
  const TensorVector *in = &input_blob->tensor_vector;
  VLOG(2) << "input size: " << in->size();
  int batch_size = input_blob->GetBatchSize();
  int input_var_num = 0;

  GeneralBlob *res = mutable_data<GeneralBlob>();
  TensorVector *out = &res->tensor_vector;

  VLOG(2) << "input batch size: " << batch_size;
  res->SetBatchSize(batch_size);

  if (!res) {
    LOG(ERROR) << "Failed get op tls reader object output";
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();

  VLOG(2) << "Going to init lod tensor";
  for (int i = 0; i < in->size(); ++i) {
    paddle::PaddleTensor lod_tensor;
    CopyLod(&in->at(i), &lod_tensor);
    lod_tensor.dtype = in->at(i).dtype;
    lod_tensor.name = in->at(i).name;
    VLOG(2) << "lod tensor [" << i << "].name = " << lod_tensor.name;
    out->push_back(lod_tensor);
  }

  VLOG(2) << "pack done.";

  for (int i = 0; i < out->size(); ++i) {
    int64_t *src_ptr = static_cast<int64_t *>(in->at(i).data.data());
    out->at(i).data.Resize(out->at(i).lod[0].back() * sizeof(int64_t));
    out->at(i).shape = {out->at(i).lod[0].back(), 1};
    int64_t *tgt_ptr = static_cast<int64_t *>(out->at(i).data.data());
    for (int j = 0; j < out->at(i).lod[0].back(); ++j) {
      tgt_ptr[j] = src_ptr[j];
    }
  }

  VLOG(2) << "output done.";

  timeline.Pause();
  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, res);
  AddBlobInfo(res, start);
  AddBlobInfo(res, end);

  VLOG(2) << "read data from client success";
  return 0;
}

DEFINE_OP(GeneralCopyOp);
}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu