general_reader_op.cpp 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_reader_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
G
guru4elephant 已提交
23
#include "core/util/include/timer.h"
24 25 26 27 28

namespace baidu {
namespace paddle_serving {
namespace serving {

G
guru4elephant 已提交
29
using baidu::paddle_serving::Timer;
30 31 32 33 34 35 36 37 38 39
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
  if (var_num != model_config->_feed_type.size()) {
B
barriery 已提交
40 41 42
    LOG(ERROR) << "feed var number not match: model config["
               << model_config->_feed_type.size() << "] vs. actual[" << var_num
               << "]";
43 44
    return -1;
  }
45 46 47

  VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  for (int i = 0; i < var_num; ++i) {
    if (model_config->_feed_type[i] !=
        req->insts(0).tensor_array(i).elem_type()) {
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
    if (model_config->_feed_shape[i].size() ==
        req->insts(0).tensor_array(i).shape_size()) {
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
        req->insts(0).tensor_array(i).shape(j);
        if (model_config->_feed_shape[i][j] !=
            req->insts(0).tensor_array(i).shape(j)) {
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
  // reade request from client
W
wangjiawei04 已提交
74
  const Request *req = dynamic_cast<const Request *>(get_request_message());
W
wangjiawei04 已提交
75 76 77 78 79
  uint64_t log_id = req->log_id();
  int input_var_num = 0;
  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
  std::vector<int64_t> capacity;
H
HexToString 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92

  GeneralBlob *res = mutable_data<GeneralBlob>();
  TensorVector *out = &res->tensor_vector;

  res->SetLogId(log_id);

  if (!res) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed get op tls reader object output";
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
W
wangjiawei04 已提交
93
  int var_num = req->insts(0).tensor_array_size();
H
HexToString 已提交
94 95 96 97 98
  VLOG(2) << "(logid=" << log_id << ") var num: " << var_num;

  VLOG(2) << "(logid=" << log_id
          << ") start to call load general model_conf op";

W
wangjiawei04 已提交
99 100
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
H
HexToString 已提交
101 102

  VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
W
wangjiawei04 已提交
103 104
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();
H
HexToString 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118

  VLOG(2) << "(logid=" << log_id << ") print general model config done.";

  // TODO(guru4elephant): how to do conditional check?
  /*
  int ret = conf_check(req, model_config);
  if (ret != 0) {
    LOG(ERROR) << "model conf of server:";
    resource.print_general_model_config(model_config);
    return 0;
  }
  */
  // package tensor

W
wangjiawei04 已提交
119 120 121
  elem_type.resize(var_num);
  elem_size.resize(var_num);
  capacity.resize(var_num);
H
HexToString 已提交
122
  // prepare basic information for input
W
wangjiawei04 已提交
123
  for (int i = 0; i < var_num; ++i) {
H
HexToString 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
    paddle::PaddleTensor lod_tensor;
    elem_type[i] = req->insts(0).tensor_array(i).elem_type();
    VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
    if (elem_type[i] == 0) {  // int64
      elem_size[i] = sizeof(int64_t);
      lod_tensor.dtype = paddle::PaddleDType::INT64;
    } else if (elem_type[i] == 1) {
      elem_size[i] = sizeof(float);
      lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
    } else if (elem_type[i] == 2) {
      elem_size[i] = sizeof(int32_t);
      lod_tensor.dtype = paddle::PaddleDType::INT32;
    }
    // implement lod tensor here
W
wangjiawei04 已提交
138
    if (req->insts(0).tensor_array(i).lod_size() > 0) {
H
HexToString 已提交
139 140
      VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor";
      lod_tensor.lod.resize(1);
W
wangjiawei04 已提交
141
      for (int k = 0; k < req->insts(0).tensor_array(i).lod_size(); ++k) {
H
HexToString 已提交
142
        lod_tensor.lod[0].push_back(req->insts(0).tensor_array(i).lod(k));
W
wangjiawei04 已提交
143 144 145 146 147 148 149
      }
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
                << "]: " << dim;
        capacity[i] *= dim;
H
HexToString 已提交
150
        lod_tensor.shape.push_back(dim);
W
wangjiawei04 已提交
151 152 153
      }
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is tensor, capacity: " << capacity[i];
W
wangjiawei04 已提交
154
    } else {
W
wangjiawei04 已提交
155 156 157 158 159 160
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
                << "]: " << dim;
        capacity[i] *= dim;
H
HexToString 已提交
161
        lod_tensor.shape.push_back(dim);
W
wangjiawei04 已提交
162 163 164 165
      }
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is tensor, capacity: " << capacity[i];
    }
H
HexToString 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    lod_tensor.name = model_config->_feed_name[i];
    out->push_back(lod_tensor);
  }
  // specify the memory needed for output tensor_vector
  for (int i = 0; i < var_num; ++i) {
    if (out->at(i).lod.size() == 1) {
      int tensor_size = 0;
      const Tensor &tensor = req->insts(0).tensor_array(i);
      int data_len = 0;
      if (tensor.int64_data_size() > 0) {
        data_len = tensor.int64_data_size();
      } else if (tensor.float_data_size() > 0) {
        data_len = tensor.float_data_size();
      } else if (tensor.int_data_size() > 0) {
        data_len = tensor.int_data_size();
      }
      VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i
              << "]: " << data_len;
      tensor_size += data_len;

      int cur_len = out->at(i).lod[0].back();
      VLOG(2) << "(logid=" << log_id << ") current len: " << cur_len;

      int sample_len = 0;
      if (tensor.shape_size() == 1) {
        sample_len = data_len;
      } else {
        sample_len = tensor.shape(0);
      }
      VLOG(2) << "(logid=" << log_id << ") new len: " << cur_len + sample_len;
      out->at(i).data.Resize(tensor_size * elem_size[i]);
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is lod_tensor and len=" << out->at(i).lod[0].back();
    } else {
      out->at(i).data.Resize(capacity[i] * elem_size[i]);
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is tensor and capacity=" << capacity[i];
    }
  }

  // fill the data into output general_blob
  for (int i = 0; i < var_num; ++i) {
    if (elem_type[i] == 0) {
      int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
              << "] is " << req->insts(0).tensor_array(i).int64_data(0);
      int offset = 0;
W
wangjiawei04 已提交
213 214
      int elem_num = req->insts(0).tensor_array(i).int64_data_size();
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
215
        dst_ptr[offset + k] = req->insts(0).tensor_array(i).int64_data(k);
W
wangjiawei04 已提交
216
      }
H
HexToString 已提交
217 218 219 220 221
    } else if (elem_type[i] == 1) {
      float *dst_ptr = static_cast<float *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
              << "] is " << req->insts(0).tensor_array(i).float_data(0);
      int offset = 0;
W
wangjiawei04 已提交
222 223
      int elem_num = req->insts(0).tensor_array(i).float_data_size();
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
224
        dst_ptr[offset + k] = req->insts(0).tensor_array(i).float_data(k);
W
wangjiawei04 已提交
225
      }
H
HexToString 已提交
226 227 228 229 230
    } else if (elem_type[i] == 2) {
      int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
              << "] is " << req->insts(0).tensor_array(i).int_data(0);
      int offset = 0;
W
wangjiawei04 已提交
231 232
      int elem_num = req->insts(0).tensor_array(i).int_data_size();
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
233
        dst_ptr[offset + k] = req->insts(0).tensor_array(i).int_data(k);
W
wangjiawei04 已提交
234 235 236
      }
    }
  }
H
HexToString 已提交
237 238 239 240 241 242 243 244 245 246

  VLOG(2) << "(logid=" << log_id << ") output size: " << out->size();
  timeline.Pause();
  int64_t end = timeline.TimeStampUS();
  res->p_size = 0;
  res->_batch_size = 1;
  AddBlobInfo(res, start);
  AddBlobInfo(res, end);

  VLOG(2) << "(logid=" << log_id << ") read data from client success";
247 248 249 250 251
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
H
HexToString 已提交
252
}  // namespace baidu