infer.h 26.4 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16
#include <sys/stat.h>
W
wangguibao 已提交
17
#include <sys/types.h>
W
wangguibao 已提交
18
#include <unistd.h>
W
wangguibao 已提交
19 20
#include <string>
#include <vector>
W
wangguibao 已提交
21 22 23 24
#include "predictor/common/inner_common.h"
#include "predictor/framework/bsf.h"
#include "predictor/framework/factory.h"
#include "predictor/framework/infer_data.h"
W
wangguibao 已提交
25 26 27 28 29

namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
30 31
using configure::ModelToolkitConf;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class InferEngineCreationParams {
 public:
  InferEngineCreationParams() {
    _path = "";
    _enable_memory_optimization = false;
    _static_optimization = false;
    _force_update_static_cache = false;
  }

  void set_path(const std::string& path) { _path = path; }

  void set_enable_memory_optimization(bool enable_memory_optimization) {
    _enable_memory_optimization = enable_memory_optimization;
  }

  bool enable_memory_optimization() const {
    return _enable_memory_optimization;
  }

  void set_static_optimization(bool static_optimization = false) {
    _static_optimization = static_optimization;
  }

  void set_force_update_static_cache(bool force_update_static_cache = false) {
    _force_update_static_cache = force_update_static_cache;
  }

  bool static_optimization() const { return _static_optimization; }

  bool force_update_static_cache() const { return _force_update_static_cache; }

  std::string get_path() const { return _path; }

  void dump() const {
    LOG(INFO) << "InferEngineCreationParams: "
              << "model_path = " << _path << ", "
              << "enable_memory_optimization = " << _enable_memory_optimization
              << ", "
              << "static_optimization = " << _static_optimization << ", "
              << "force_update_static_cache = " << _force_update_static_cache;
  }

 private:
  std::string _path;
  bool _enable_memory_optimization;
  bool _static_optimization;
  bool _force_update_static_cache;
};

W
wangguibao 已提交
81
class InferEngine {
W
wangguibao 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
    return infer_impl1(in, out, batch_size);
  }

  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
  virtual int infer_impl1(const void* in,
                          void* out,
                          uint32_t batch_size = -1) = 0;
  virtual int infer_impl2(const BatchTensor& in,
                          BatchTensor& out) = 0;  // NOLINT
  // end: framework inner call
};

class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
118

W
wangguibao 已提交
119 120 121 122 123
  union last_check_status {
    time_t last_timestamp;
    uint64_t last_md5sum;
    uint64_t last_revision;
  };
W
wangguibao 已提交
124

W
wangguibao 已提交
125 126
  typedef im::bsf::Task<Tensor, Tensor> TaskT;

127
  virtual int load(const InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
128 129 130 131 132 133 134 135

  int proc_initialize_impl(const configure::EngineDesc& conf, bool version) {
    _reload_tag_file = conf.reloadable_meta();
    _reload_mode_tag = conf.reloadable_type();
    _model_data_path = conf.model_data_path();
    _infer_thread_num = conf.runtime_thread_num();
    _infer_batch_size = conf.batch_infer_size();
    _infer_batch_align = conf.enable_batch_align();
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    bool enable_memory_optimization = false;
    if (conf.has_enable_memory_optimization()) {
      enable_memory_optimization = conf.enable_memory_optimization();
    }

    bool static_optimization = false;
    if (conf.has_static_optimization()) {
      static_optimization = conf.static_optimization();
    }

    bool force_update_static_cache = false;
    if (conf.has_force_update_static_cache()) {
      force_update_static_cache = conf.force_update_static_cache();
    }

    _infer_engine_params.set_path(_model_data_path);
    if (enable_memory_optimization) {
      _infer_engine_params.set_enable_memory_optimization(true);
      _infer_engine_params.set_static_optimization(static_optimization);
      _infer_engine_params.set_force_update_static_cache(
          force_update_static_cache);
    }

    if (!check_need_reload() || load(_infer_engine_params) != 0) {
W
wangguibao 已提交
161 162
      LOG(ERROR) << "Failed load model_data_path" << _model_data_path;
      return -1;
W
wangguibao 已提交
163
    }
W
wangguibao 已提交
164 165 166 167

    if (parse_version_info(conf, version) != 0) {
      LOG(ERROR) << "Failed parse version info";
      return -1;
W
wangguibao 已提交
168
    }
W
wangguibao 已提交
169 170 171 172 173 174 175 176 177

    LOG(WARNING) << "Succ load model_data_path" << _model_data_path;
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    if (proc_initialize_impl(conf, version) != 0) {
      LOG(ERROR) << "Failed proc initialize impl";
      return -1;
W
wangguibao 已提交
178
    }
W
wangguibao 已提交
179 180 181 182

    // init bsf framework
    if (_infer_thread_num <= 0) {
      return 0;
W
wangguibao 已提交
183
    }
W
wangguibao 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197

    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_init_fn(
        boost::bind(&InferEngine::thrd_initialize_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_reset_fn(
        boost::bind(&InferEngine::thrd_clear_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_callback_fn(
        boost::bind(&InferEngine::infer_impl2, this, _1, _2));
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_size(_infer_batch_size);
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_align(
        _infer_batch_align);
    if (im::bsf::TaskExecutor<TaskT>::instance()->start(_infer_thread_num) !=
        0) {
      LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
      return -1;
W
wangguibao 已提交
198 199
    }

W
wangguibao 已提交
200 201 202
    LOG(WARNING) << "Enable batch schedule framework, thread_num:"
                 << _infer_thread_num << ", batch_size:" << _infer_batch_size
                 << ", enable_batch_align:" << _infer_batch_align;
W
wangguibao 已提交
203

W
wangguibao 已提交
204 205
    return 0;
  }
W
wangguibao 已提交
206

W
wangguibao 已提交
207 208 209 210
  int infer(const void* in, void* out, uint32_t batch_size = -1) {
    if (_infer_thread_num <= 0) {
      return infer_impl1(in, out, batch_size);
    }
W
wangguibao 已提交
211

W
wangguibao 已提交
212 213 214 215 216 217
    im::bsf::TaskManager<Tensor, Tensor> task_manager;
    task_manager.schedule(*(reinterpret_cast<const BatchTensor*>(in)),
                          *(reinterpret_cast<BatchTensor*>(out)));
    task_manager.wait();
    return 0;
  }
W
wangguibao 已提交
218

W
wangguibao 已提交
219 220 221 222
  int thrd_initialize() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
223

W
wangguibao 已提交
224 225
    return thrd_initialize_impl();
  }
W
wangguibao 已提交
226

W
wangguibao 已提交
227 228 229 230
  int thrd_clear() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
231

W
wangguibao 已提交
232 233
    return thrd_clear_impl();
  }
W
wangguibao 已提交
234

W
wangguibao 已提交
235 236 237 238 239
  int proc_finalize() {
    if (proc_finalize_impl() != 0) {
      LOG(ERROR) << "Failed proc finalize impl";
      return -1;
    }
W
wangguibao 已提交
240

W
wangguibao 已提交
241 242
    if (_infer_thread_num > 0) {
      im::bsf::TaskExecutor<TaskT>::instance()->stop();
W
wangguibao 已提交
243 244
    }

W
wangguibao 已提交
245 246
    return 0;
  }
W
wangguibao 已提交
247

W
wangguibao 已提交
248 249 250
  int reload() {
    if (check_need_reload()) {
      LOG(WARNING) << "begin reload model[" << _model_data_path << "].";
251
      return load(_infer_engine_params);
W
wangguibao 已提交
252 253 254 255 256 257 258
    }
    return 0;
  }

  uint64_t version() const { return _version; }

  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
259

W
wangguibao 已提交
260 261 262 263 264
 private:
  int parse_version_info(const configure::EngineDesc& config, bool version) {
    _version = uint64_t(-1);
    return 0;
  }
W
wangguibao 已提交
265

W
wangguibao 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  bool check_need_reload() {
    if (_reload_mode_tag == "timestamp_ne") {
      return check_timestamp_ne();
    } else if (_reload_mode_tag == "timestamp_gt") {
      return check_timestamp_gt();
    } else if (_reload_mode_tag == "md5sum") {
      return check_md5sum();
    } else if (_reload_mode_tag == "revision") {
      return check_revision();
    } else if (_reload_mode_tag == "none") {
      return false;
    } else {
      LOG(ERROR) << "Not support check type: " << _reload_mode_tag;
      return false;
    }
  }

  bool check_timestamp_ne() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
289

W
wangguibao 已提交
290 291 292
    if ((st.st_mode & S_IFREG) && st.st_mtime != _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
293 294
    }

W
wangguibao 已提交
295 296
    return false;
  }
W
wangguibao 已提交
297

W
wangguibao 已提交
298 299 300 301 302 303
  bool check_timestamp_gt() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
304

W
wangguibao 已提交
305 306 307
    if ((st.st_mode & S_IFREG) && st.st_mtime > _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
308 309
    }

W
wangguibao 已提交
310 311 312 313 314 315 316 317 318
    return false;
  }

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
  std::string _model_data_path;
319
  InferEngineCreationParams _infer_engine_params;
W
wangguibao 已提交
320 321 322 323 324 325 326 327 328 329

 private:
  std::string _reload_tag_file;
  std::string _reload_mode_tag;
  last_check_status _last_status;
  uint32_t _infer_thread_num;
  uint32_t _infer_batch_size;
  bool _infer_batch_align;
  uint64_t _version;
};
W
wangguibao 已提交
330

W
wangguibao 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
    cores[0] = NULL;
    cores[1] = NULL;
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
  }

  EngineCore* cores[2];
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

358
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
359 360
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
361 362
    }

W
wangguibao 已提交
363
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
364
      if (load_data(_reload_vec[ti], params) != 0) {
W
wangguibao 已提交
365 366 367 368 369
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

370
    LOG(WARNING) << "Succ load engine, path: " << params.get_path();
W
wangguibao 已提交
371

W
wangguibao 已提交
372 373
    return 0;
  }
W
wangguibao 已提交
374

375 376
  int load_data(ModelData<EngineCore>* md,
                const InferEngineCreationParams& params) {
W
wangguibao 已提交
377 378 379
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
380 381
    }

W
wangguibao 已提交
382
    md->cores[next_idx] = new (std::nothrow) EngineCore;
383 384 385 386

    params.dump();
    if (!md->cores[next_idx] || md->cores[next_idx]->create(params) != 0) {
      LOG(ERROR) << "Failed create model, path: " << params.get_path();
W
wangguibao 已提交
387
      return -1;
W
wangguibao 已提交
388
    }
W
wangguibao 已提交
389 390 391
    md->current_idx = next_idx;
    return 0;
  }
W
wangguibao 已提交
392

W
wangguibao 已提交
393 394 395 396 397
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
398 399
    }

W
wangguibao 已提交
400
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
401 402 403
    if (!md || load_data(md, _infer_engine_params) != 0) {
      LOG(ERROR) << "Failed create thread data from "
                 << _infer_engine_params.get_path();
W
wangguibao 已提交
404
      return -1;
W
wangguibao 已提交
405 406
    }

W
wangguibao 已提交
407 408 409 410 411 412 413 414 415 416 417
    THREAD_SETSPECIFIC(_skey, md);
    im::bsf::AutoMutex lock(_mutex);
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
    // for non-serving-threads
    if (MempoolWrapper::instance().thread_clear() != 0) {
      LOG(ERROR) << "Failed thread clear mempool";
      return -1;
W
wangguibao 已提交
418
    }
W
wangguibao 已提交
419 420 421 422
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
423

W
wangguibao 已提交
424 425 426 427 428
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
429

W
wangguibao 已提交
430 431 432 433 434 435
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
436
    }
W
wangguibao 已提交
437 438
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
439

W
wangguibao 已提交
440 441 442 443
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
  std::vector<ModelData<EngineCore>*> _reload_vec;
W
wangguibao 已提交
444

W
wangguibao 已提交
445 446
 private:
};
W
wangguibao 已提交
447

W
wangguibao 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    _pd = new (std::nothrow) ModelData<EngineCore>;
    if (!_pd) {
      LOG(ERROR) << "Failed to allocate for ProcData";
      return -1;
    }
    return DBReloadableInferEngine<EngineCore>::proc_initialize(conf, version);
  }

464
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
465 466
    // 加载进程级模型数据
    if (!_pd ||
467 468
        DBReloadableInferEngine<EngineCore>::load_data(_pd, params) != 0) {
      LOG(ERROR) << "Failed to create common model from [" << params.get_path()
W
wangguibao 已提交
469 470 471 472
                 << "].";
      return -1;
    }
    LOG(WARNING) << "Succ load common model[" << _pd->cores[_pd->current_idx]
473
                 << "], path[" << params.get_path() << "].";
W
wangguibao 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486

    if (DBReloadableInferEngine<EngineCore>::_reload_vec.empty()) {
      return 0;
    }

    for (uint32_t ti = 0;
         ti < DBReloadableInferEngine<EngineCore>::_reload_vec.size();
         ++ti) {
      if (load_data(DBReloadableInferEngine<EngineCore>::_reload_vec[ti],
                    _pd->cores[_pd->current_idx]) != 0) {
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
W
wangguibao 已提交
487 488
    }

489
    LOG(WARNING) << "Succ load clone model, path[" << params.get_path() << "]";
W
wangguibao 已提交
490

W
wangguibao 已提交
491 492
    return 0;
  }
W
wangguibao 已提交
493

W
wangguibao 已提交
494 495 496 497 498
  // 加载线程级对象,多个线程级对象共用pd_core的模型数据
  int load_data(ModelData<EngineCore>* td, EngineCore* pd_core) {
    uint32_t next_idx = (td->current_idx + 1) % 2;
    if (td->cores[next_idx]) {
      delete td->cores[next_idx];
W
wangguibao 已提交
499 500
    }

W
wangguibao 已提交
501 502 503 504 505 506
    td->cores[next_idx] = new (std::nothrow) EngineCore;
    if (!td->cores[next_idx] ||
        td->cores[next_idx]->clone(pd_core->get()) != 0) {
      LOG(ERROR) << "Failed clone model from pd_core[ " << pd_core << "], idx["
                 << next_idx << "]";
      return -1;
W
wangguibao 已提交
507
    }
W
wangguibao 已提交
508 509 510 511 512 513
    td->current_idx = next_idx;
    LOG(WARNING) << "td_core[" << td->cores[td->current_idx]
                 << "] clone model from pd_core[" << pd_core
                 << "] succ, cur_idx[" << td->current_idx << "].";
    return 0;
  }
W
wangguibao 已提交
514

W
wangguibao 已提交
515 516 517 518 519
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
520 521
    }

W
wangguibao 已提交
522 523 524 525 526 527 528 529 530 531 532 533
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
    if (!md || load_data(md, _pd->cores[_pd->current_idx]) != 0) {
      LOG(ERROR) << "Failed clone thread data, origin_core["
                 << _pd->cores[_pd->current_idx] << "].";
      return -1;
    }

    THREAD_SETSPECIFIC(DBReloadableInferEngine<EngineCore>::_skey, md);
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
    DBReloadableInferEngine<EngineCore>::_reload_vec.push_back(md);
    return 0;
  }
W
wangguibao 已提交
534

W
wangguibao 已提交
535 536 537
 protected:
  ModelData<EngineCore>*
      _pd;  // 进程级EngineCore,多个线程级EngineCore共用该对象的模型数据
W
wangguibao 已提交
538 539
};

W
wangguibao 已提交
540
template <typename FluidFamilyCore>
W
Wang Guibao 已提交
541
class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
W
wangguibao 已提交
542 543 544
 public:
  FluidInferEngine() {}
  ~FluidInferEngine() {}
W
wangguibao 已提交
545

W
wangguibao 已提交
546 547 548 549 550 551
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    FluidFamilyCore* core =
        DBReloadableInferEngine<FluidFamilyCore>::get_core();
    if (!core || !core->get()) {
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangguibao 已提交
552 553
    }

W
wangguibao 已提交
554 555 556 557 558 559
    if (!core->Run(in, out)) {
      LOG(ERROR) << "Failed run fluid family core";
      return -1;
    }
    return 0;
  }
W
wangguibao 已提交
560

W
wangguibao 已提交
561 562 563
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return infer_impl1(&in, &out);
  }
W
wangguibao 已提交
564 565
};

W
wangguibao 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf) {
    if (proc_initialize(conf, false) != 0) {
      LOG(ERROR) << "Failed proc intialize engine: " << conf.name().c_str();
      return -1;
    }

    LOG(WARNING) << "Succ proc initialize engine: " << conf.name().c_str();
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    std::string engine_type = conf.type();
    InferEngine* engine =
        StaticInferFactory::instance().generate_object(engine_type);
    if (!engine) {
      LOG(ERROR) << "Failed generate engine with type:" << engine_type;
      return -1;
    }

    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }

    auto r = _versions.insert(std::make_pair(engine->version(), engine));
    if (!r.second) {
      LOG(ERROR) << "Failed insert item: " << engine->version()
                 << ", type: " << engine_type;
      return -1;
    }
    LOG(WARNING) << "Succ proc initialize version engine: "
                 << engine->version();
    return 0;
  }

  int proc_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize version engine: " << iter->first;
      }
      LOG(WARNING) << "Succ proc finalize version engine: " << iter->first;
    }
    return 0;
  }

  int thrd_initialize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
622
        return -1;
W
wangguibao 已提交
623 624
      }
      LOG(WARNING) << "Succ thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
625
    }
W
wangguibao 已提交
626 627
    return 0;
  }
W
wangguibao 已提交
628

W
wangguibao 已提交
629 630 631 632
  int thrd_clear() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear version engine: " << iter->first;
W
wangguibao 已提交
633
        return -1;
W
wangguibao 已提交
634 635
      }
      LOG(INFO) << "Succ thrd clear version engine: " << iter->first;
W
wangguibao 已提交
636
    }
W
wangguibao 已提交
637 638
    return 0;
  }
W
wangguibao 已提交
639

W
wangguibao 已提交
640 641 642 643 644 645 646
  int thrd_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
W
wangguibao 已提交
647
    }
W
wangguibao 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    return 0;
  }

  int reload() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->reload() != 0) {
        LOG(ERROR) << "Failed reload version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ reload version engine: " << iter->first;
    }
    return 0;
  }

  uint64_t version() const {
    InferEngine* engine = default_engine();
    if (engine) {
      return engine->version();
    } else {
      return uint64_t(-1);
    }
  }

  // inference interface
  InferEngine* default_engine() const {
    if (_versions.size() != 1) {
      LOG(ERROR) << "Ambiguous default engine version:" << _versions.size();
      return NULL;
    }

    return _versions.begin()->second;
  }

  int infer(const void* in, void* out, uint32_t batch_size) {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get default engine";
      return -1;
    }
    return engine->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core() {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get core";
      return NULL;
    }
    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core";
    return NULL;
  }

  // versioned inference interface
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return -1;
    }

    return iter->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return NULL;
    }

    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << version;
    return NULL;
  }

  // --
  int proc_initialize_impl(const configure::EngineDesc& conf, bool) {
    return -1;
  }
  int thrd_initialize_impl() { return -1; }
  int thrd_finalize_impl() { return -1; }
  int thrd_clear_impl() { return -1; }
  int proc_finalize_impl() { return -1; }
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    return -1;
  }
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return -1;
  }  // NOLINT

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
749 750
};

W
wangguibao 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

  int proc_initialize(const char* path, const char* file) {
    ModelToolkitConf model_toolkit_conf;
    if (configure::read_proto_conf(path, file, &model_toolkit_conf) != 0) {
      LOG(ERROR) << "failed load infer config, path: " << path << "/" << file;
      return -1;
    }

    size_t engine_num = model_toolkit_conf.engines_size();
    for (size_t ei = 0; ei < engine_num; ++ei) {
      std::string engine_name = model_toolkit_conf.engines(ei).name();
      VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
      if (!engine) {
        LOG(ERROR) << "Failed generate versioned engine: " << engine_name;
        return -1;
      }

      if (engine->proc_initialize(model_toolkit_conf.engines(ei)) != 0) {
        LOG(ERROR) << "Failed initialize version engine, name:" << engine_name;
W
wangguibao 已提交
776
        return -1;
W
wangguibao 已提交
777 778 779 780 781 782 783 784
      }

      auto r = _map.insert(std::make_pair(engine_name, engine));
      if (!r.second) {
        LOG(ERROR) << "Failed insert item: " << engine_name;
        return -1;
      }
      LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
W
wangguibao 已提交
785 786
    }

W
wangguibao 已提交
787 788 789 790 791 792 793
    return 0;
  }

  int thrd_initialize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
794
        return -1;
W
wangguibao 已提交
795 796
      }
      LOG(WARNING) << "Succ thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
797
    }
W
wangguibao 已提交
798 799
    return 0;
  }
W
wangguibao 已提交
800

W
wangguibao 已提交
801 802 803 804 805 806 807 808 809
  int thrd_clear() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
810

W
wangguibao 已提交
811 812 813 814 815 816 817 818 819
  int reload() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->reload() != 0) {
        LOG(ERROR) << "Failed reload engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
820

W
wangguibao 已提交
821 822 823 824 825 826 827 828 829 830
  int thrd_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize engine, name: " << it->first;
    }
    return 0;
  }
W
wangguibao 已提交
831

W
wangguibao 已提交
832 833 834 835 836 837 838 839
  int proc_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ proc finalize engine, name: " << it->first;
    }
W
wangguibao 已提交
840
    _map.clear();
W
wangguibao 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    return 0;
  }

  // Inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size = -1) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(const char* model_name) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    auto infer_engine =
        dynamic_cast<DBReloadableInferEngine<T>*>(it->second->default_engine());
    if (infer_engine) {
      return infer_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << model_name;
    return NULL;
  }

  // Versioned inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size,
            uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size, version);
  }

  template <typename T>
  T* get_core(const char* model_name, uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    return it->second->get_core<T>(version);
  }

  int query_version(const std::string& model, uint64_t& version) {  // NOLINT
    auto it = _map.find(model);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model;
      return -1;
    }
    auto infer_engine = it->second->default_engine();
    if (!infer_engine) {
      LOG(WARNING) << "Cannot get default engine for model:" << model;
      return -1;
    }
    version = infer_engine->version();
    LOG(INFO) << "Succ get version: " << version << " for model: " << model;
    return 0;
  }

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
916

W
wangguibao 已提交
917 918 919
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu