README.md 9.2 KB
Newer Older
M
MRXLT 已提交
1 2
([简体中文](./README_CN.md)|English)

D
Dong Daxiang 已提交
3 4
<p align="center">
    <br>
T
TeslaZhao 已提交
5
<img src='doc/images/serving_logo.png' width = "600" height = "130">
D
Dong Daxiang 已提交
6 7
    <br>
<p>
8

D
Dong Daxiang 已提交
9 10
<p align="center">
    <br>
B
barrierye 已提交
11
    <a href="https://travis-ci.com/PaddlePaddle/Serving">
T
TeslaZhao 已提交
12 13 14 15 16 17 18 19 20
        <img alt="Build Status" src="https://img.shields.io/travis/com/PaddlePaddle/Serving/develop?style=flat-square">
        <img alt="Docs" src="https://img.shields.io/badge/docs-中文文档-brightgreen?style=flat-square">
        <img alt="Release" src="https://img.shields.io/badge/release-0.7.0-blue?style=flat-square">
        <img alt="Python" src="https://img.shields.io/badge/python-3.6+-blue?style=flat-square">
        <img alt="License" src="https://img.shields.io/github/license/PaddlePaddle/Serving?color=blue&style=flat-square">
        <img alt="Forks" src="https://img.shields.io/github/forks/PaddlePaddle/Serving?color=yellow&style=flat-square">
        <img alt="Issues" src="https://img.shields.io/github/issues/PaddlePaddle/Serving?color=yellow&style=flat-square">
        <img alt="Contributors" src="https://img.shields.io/github/contributors/PaddlePaddle/Serving?color=orange&style=flat-square">
        <img alt="Community" src="https://img.shields.io/badge/join-Wechat,QQ,Slack-orange?style=flat-square">
B
barrierye 已提交
21
    </a>
D
Dong Daxiang 已提交
22 23
    <br>
<p>
D
Dong Daxiang 已提交
24

T
TeslaZhao 已提交
25 26 27
***

The goal of Paddle Serving is to provide high-performance, flexible and easy-to-use industrial-grade online inference services for machine learning developers and enterprises.Paddle Serving supports multiple protocols such as RESTful, gRPC, bRPC, and provides inference solutions under a variety of hardware and multiple operating system environments, and many famous pre-trained model examples.The core features are as follows:
W
wangjiawei04 已提交
28

D
Dong Daxiang 已提交
29

T
TeslaZhao 已提交
30
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
T
TeslaZhao 已提交
31
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline.The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md)
T
TeslaZhao 已提交
32
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md ) such as HTTP, gRPC, bRPC,  and provide C++, Python, Java language SDK.
T
TeslaZhao 已提交
33 34 35 36 37
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, etc.; Integrate acceleration libraries of Intel MKLDNN and  Nvidia TensorRT, and low-precision and quantitative inference.
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
- Support cloud deployment, provide a deployment case of Baidu Cloud Intelligent Cloud kubernetes cluster.
- Provide more than 40 classic pre-model deployment examples, such as PaddleOCR, PaddleClas, PaddleDetection, PaddleSeg, PaddleNLP, PaddleRec and other suites, and more models continue to expand.
- Supports distributed deployment of large-scale sparse parameter index models, with features such as multiple tables, multiple shards, multiple copies, local high-frequency cache, etc., and can be deployed on a single machine or clouds.
W
wangjiawei04 已提交
38

W
wangjiawei04 已提交
39

T
TeslaZhao 已提交
40
<h2 align="center">Tutorial</h2>
W
wangjiawei04 已提交
41

J
Jiawei Wang 已提交
42

T
TeslaZhao 已提交
43
- AIStudio tutorial(Chinese) : [Paddle Serving服务化部署框架](https://www.paddlepaddle.org.cn/tutorials/projectdetail/1975340)
W
wangjiawei04 已提交
44

T
TeslaZhao 已提交
45
- Video tutorial(Chinese) : [深度学习服务化部署-以互联网应用为例](https://aistudio.baidu.com/aistudio/course/introduce/19084)
D
Dong Daxiang 已提交
46
<p align="center">
T
TeslaZhao 已提交
47
    <img src="doc/images/demo.gif" width="700">
D
Dong Daxiang 已提交
48
</p>
D
Dong Daxiang 已提交
49

T
TeslaZhao 已提交
50 51
<h2 align="center">Documentation</h2>

D
Dong Daxiang 已提交
52

T
TeslaZhao 已提交
53
> Set up
W
wangjiawei04 已提交
54

T
TeslaZhao 已提交
55
This chapter guides you through the installation and deployment steps. It is strongly recommended to use Docker to deploy Paddle Serving. If you do not use docker, ignore the docker-related steps. Paddle Serving can be deployed on cloud servers using Kubernetes, running on many commonly hardwares such as ARM CPU, Intel CPU, Nvidia GPU, Kunlun XPU. The latest development kit of the develop branch is compiled and generated every day for developers to use.
W
wangjiawei04 已提交
56

T
TeslaZhao 已提交
57 58
- [Install Paddle Serving using docker](doc/Install_EN.md)
- [Build Paddle Serving from Source with Docker](doc/Compile_EN.md)
T
TeslaZhao 已提交
59 60
- [Deploy Paddle Serving on Kubernetes](doc/Run_On_Kubernetes_CN.md)
- [Deploy Paddle Serving with Security gateway](doc/Serving_Auth_Docker_CN.md)
T
TeslaZhao 已提交
61 62
- [Deploy Paddle Serving on more hardwares](doc/Run_On_XPU_EN.md)
- [Latest Wheel packages](doc/Latest_Packages_CN.md)(Update everyday on branch develop)
W
wangjiawei04 已提交
63

T
TeslaZhao 已提交
64
> Use
W
wangjiawei04 已提交
65

T
TeslaZhao 已提交
66
The first step is to call the model save interface to generate a model parameter configuration file (.prototxt), which will be used on the client and server. The second step, read the configuration and startup parameters and start the service. According to API documents and your case, the third step is to write client requests based on the SDK, and test the inference service.
D
Dong Daxiang 已提交
67

T
TeslaZhao 已提交
68 69 70
- [Quick Start](doc/Quick_Start_EN.md)
- [Save a servable model](doc/Save_EN.md)
- [Description of configuration and startup parameters](doc/Serving_Configure_EN.md)
T
TeslaZhao 已提交
71
- [Guide for RESTful/gRPC/bRPC APIs](doc/C++_Serving/Introduction_CN.md)
T
TeslaZhao 已提交
72
- [Infer on quantizative models](doc/Low_Precision_CN.md)
S
ShiningZhang 已提交
73
- [Data format of classic models](doc/Process_data_CN.md)
T
TeslaZhao 已提交
74
- [C++ Serving](doc/C++_Serving/Introduction_CN.md) 
T
TeslaZhao 已提交
75
  - [protocols](doc/C++_Serving/Inference_Protocols_CN.md)
T
TeslaZhao 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88
  - [Hot loading models](doc/C++_Serving/Hot_Loading_EN.md)
  - [A/B Test](doc/C++_Serving/ABTest_EN.md)
  - [Encryption](doc/C++_Serving/Encryption_EN.md)
  - [Analyze and optimize performance(Chinese)](doc/C++_Serving/Performance_Tuning_CN.md)
  - [Benchmark(Chinese)](doc/C++_Serving/Benchmark_CN.md)
- [Python Pipeline](doc/Python_Pipeline/Pipeline_Design_EN.md)
  - [Analyze and optimize performance](doc/Python_Pipeline/Pipeline_Design_EN.md)
  - [Benchmark(Chinese)](doc/Python_Pipeline/Benchmark_CN.md)
- Client SDK
  - [Python SDK(Chinese)](doc/C++_Serving/Http_Service_CN.md)
  - [JAVA SDK](doc/Java_SDK_EN.md)
  - [C++ SDK(Chinese)](doc/C++_Serving/Creat_C++Serving_CN.md)
- [Large-scale sparse parameter server](doc/Cube_Local_EN.md)
T
TeslaZhao 已提交
89

T
TeslaZhao 已提交
90
<br>
W
wangjiawei04 已提交
91

T
TeslaZhao 已提交
92 93
> Developers

T
TeslaZhao 已提交
94
For Paddle Serving developers, we provide extended documents such as custom OP, level of detail(LOD) processing.
T
TeslaZhao 已提交
95
- [Custom Operators](doc/C++_Serving/OP_EN.md)
T
TeslaZhao 已提交
96
- [Processing LOD Data](doc/LOD_EN.md)
T
TeslaZhao 已提交
97
- [FAQ(Chinese)](doc/FAQ_CN.md)
T
TeslaZhao 已提交
98 99 100

<h2 align="center">Model Zoo</h2>

W
wangjiawei04 已提交
101

T
TeslaZhao 已提交
102
Paddle Serving works closely with the Paddle model suite, and implements a large number of service deployment examples, including image classification, object detection, language and text recognition, Chinese part of speech, sentiment analysis, content recommendation and other types of examples,  for a total of 42 models.
J
Jiawei Wang 已提交
103

T
TeslaZhao 已提交
104
<p align="center">
T
TeslaZhao 已提交
105 106 107 108 109

| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | 
| :----:  | :----: | :----: | :----: | :----: | :----: | 
| 8 | 12 | 13 | 2 | 3 | 4 | 

T
TeslaZhao 已提交
110
</p>
T
TeslaZhao 已提交
111

T
TeslaZhao 已提交
112
For more model examples, read [Model zoo](doc/Model_Zoo_EN.md)
T
TeslaZhao 已提交
113

T
TeslaZhao 已提交
114
<p align="center">
T
TeslaZhao 已提交
115 116
  <img src="https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/imgs_results/PP-OCRv2/PP-OCRv2-pic003.jpg?raw=true" width="345"/> 
  <img src="doc/images/detection.png" width="350">
T
TeslaZhao 已提交
117
</p>
W
fix doc  
wangjiawei04 已提交
118

D
Dong Daxiang 已提交
119

W
wangjiawei04 已提交
120
<h2 align="center">Community</h2>
D
Dong Daxiang 已提交
121

T
TeslaZhao 已提交
122 123 124
If you want to communicate with developers and other users? Welcome to join us, join the community through the following methods below.

### Wechat
T
TeslaZhao 已提交
125
- WeChat scavenging
T
TeslaZhao 已提交
126 127


T
TeslaZhao 已提交
128
<p align="center">
T
TeslaZhao 已提交
129
  <img src="doc/images/wechat_group_1.jpeg" width="250">
T
TeslaZhao 已提交
130
</p>
T
TeslaZhao 已提交
131 132

### QQ
T
TeslaZhao 已提交
133
- 飞桨推理部署交流群(Group No.:697765514)
T
TeslaZhao 已提交
134

T
TeslaZhao 已提交
135
<p align="center">
T
TeslaZhao 已提交
136
  <img src="doc/images/qq_group_1.png" width="200">
T
TeslaZhao 已提交
137
</p>
T
TeslaZhao 已提交
138

D
Dong Daxiang 已提交
139
### Slack
D
Dong Daxiang 已提交
140

T
TeslaZhao 已提交
141
- [Slack channel](https://paddleserving.slack.com/archives/CUBPKHKMJ)
D
Dong Daxiang 已提交
142

T
TeslaZhao 已提交
143
> Contribution
D
Dong Daxiang 已提交
144

T
TeslaZhao 已提交
145
If you want to contribute code to Paddle Serving, please reference [Contribution Guidelines](doc/Contribute_EN.md)
T
TeslaZhao 已提交
146 147 148 149 150 151
- Thanks to [@loveululu](https://github.com/loveululu) for providing python API of Cube.
- Thanks to [@EtachGu](https://github.com/EtachGu) in updating run docker codes.
- Thanks to [@BeyondYourself](https://github.com/BeyondYourself) in complementing the gRPC tutorial, updating the FAQ doc and modifying the mdkir command
- Thanks to [@mcl-stone](https://github.com/mcl-stone) in updating faster_rcnn benchmark
- Thanks to [@cg82616424](https://github.com/cg82616424) in updating the unet benchmark  modifying resize comment error
- Thanks to [@cuicheng01](https://github.com/cuicheng01) for providing 11 PaddleClas models
P
PaddlePM 已提交
152

T
TeslaZhao 已提交
153
> Feedback
D
Dong Daxiang 已提交
154

D
Dong Daxiang 已提交
155 156
For any feedback or to report a bug, please propose a [GitHub Issue](https://github.com/PaddlePaddle/Serving/issues).

T
TeslaZhao 已提交
157
> License
D
Dong Daxiang 已提交
158

D
Dong Daxiang 已提交
159
[Apache 2.0 License](https://github.com/PaddlePaddle/Serving/blob/develop/LICENSE)