COMPILE.md 6.0 KB
Newer Older
J
Jiawei Wang 已提交
1
# How to compile PaddleServing
D
Dong Daxiang 已提交
2

J
Jiawei Wang 已提交
3 4 5
([简体中文](./COMPILE_CN.md)|English)

## Compilation environment requirements
B
barrierye 已提交
6

B
barrierye 已提交
7 8 9 10 11 12
- OS: CentOS 7
- GCC: 4.8.2 and later
- Golang: 1.9.2 and later
- Git:2.17.1 and later
- CMake:3.2.2 and later
- Python:2.7.2 and later
D
Dong Daxiang 已提交
13

B
barrierye 已提交
14 15 16 17 18
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you: 

- CPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-devel`,dockerfile: [Dockerfile.devel](../tools/Dockerfile.devel)
- GPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu-devel`,dockerfile: [Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)

B
barrierye 已提交
19
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python 3, just adjust the Python options of cmake.
B
barrierye 已提交
20

J
Jiawei Wang 已提交
21
## Get Code
D
Dong Daxiang 已提交
22 23 24

``` python
git clone https://github.com/PaddlePaddle/Serving
25
cd Serving && git submodule update --init --recursive
D
Dong Daxiang 已提交
26 27
```

J
Jiawei Wang 已提交
28
## PYTHONROOT Setting
D
Dong Daxiang 已提交
29

B
barrierye 已提交
30
```shell
J
Jiawei Wang 已提交
31
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT
D
Dong Daxiang 已提交
32 33 34
export PYTHONROOT=/usr/
```

J
Jiawei Wang 已提交
35
## Compile Server
B
barrierye 已提交
36

J
Jiawei Wang 已提交
37
### Integrated CPU version paddle inference library
B
barrierye 已提交
38

D
Dong Daxiang 已提交
39
``` shell
B
barrierye 已提交
40 41
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
D
Dong Daxiang 已提交
42 43 44
make -j10
```

J
Jiawei Wang 已提交
45
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
B
barrierye 已提交
46

J
Jiawei Wang 已提交
47
### Integrated GPU version paddle inference library
B
barrierye 已提交
48

D
Dong Daxiang 已提交
49
``` shell
B
barrierye 已提交
50 51
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON ..
D
Dong Daxiang 已提交
52 53 54
make -j10
```

J
Jiawei Wang 已提交
55
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
56

J
Jiawei Wang 已提交
57
## Compile Client
D
Dong Daxiang 已提交
58 59

``` shell
B
barrierye 已提交
60 61
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON ..
D
Dong Daxiang 已提交
62 63
make -j10
```
D
Dong Daxiang 已提交
64

J
Jiawei Wang 已提交
65
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
66

J
Jiawei Wang 已提交
67
## Compile the App
B
barrierye 已提交
68 69 70

```bash
mkdir build && cd build
71
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DAPP=ON ..
B
barrierye 已提交
72 73 74
make
```

J
Jiawei Wang 已提交
75 76 77
## Install wheel package

Regardless of the client, server or App part, after compiling, install the whl package under `python/dist/`.
B
barrierye 已提交
78

J
Jiawei Wang 已提交
79
## Note
B
barrierye 已提交
80

J
Jiawei Wang 已提交
81
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
B
barrierye 已提交
82

83

J
Jiawei Wang 已提交
84
## CMake Option Description
B
barrierye 已提交
85

J
Jiawei Wang 已提交
86
| Compile Options  |                    Description             | Default |
B
barrierye 已提交
87 88 89 90 91 92 93 94 95 96 97
| :--------------: | :----------------------------------------: | :--: |
|     WITH_AVX     | Compile Paddle Serving with AVX intrinsics | OFF  |
|     WITH_MKL     |  Compile Paddle Serving with MKL support   | OFF  |
|     WITH_GPU     |   Compile Paddle Serving with NVIDIA GPU   | OFF  |
|    CUDNN_ROOT    |    Define CuDNN library and header path    |      |
|      CLIENT      |       Compile Paddle Serving Client        | OFF  |
|      SERVER      |       Compile Paddle Serving Server        | OFF  |
|       APP        |     Compile Paddle Serving App package     | OFF  |
| WITH_ELASTIC_CTR |        Compile ELASITC-CTR solution        | OFF  |
|       PACK       |              Compile for whl               | OFF  |

J
Jiawei Wang 已提交
98
### WITH_GPU Option
B
barrierye 已提交
99

J
Jiawei Wang 已提交
100
Paddle Serving supports prediction on the GPU through the PaddlePaddle inference library. The WITH_GPU option is used to detect basic libraries such as CUDA/CUDNN on the system. If an appropriate version is detected, the GPU Kernel will be compiled when PaddlePaddle is compiled.
B
barrierye 已提交
101

J
Jiawei Wang 已提交
102
To compile the Paddle Serving GPU version on bare metal, you need to install these basic libraries:
B
barrierye 已提交
103 104 105 106 107

- CUDA
- CuDNN
- NCCL2

J
Jiawei Wang 已提交
108 109 110 111
Note here:

1. The basic library versions such as CUDA/CUDNN installed on the system where Serving is compiled, needs to be compatible with the actual GPU device. For example, the Tesla V100 card requires at least CUDA 9.0. If the version of the basic library such as CUDA used during compilation is too low, the generated GPU code is not compatible with the actual hardware device, which will cause the Serving process to fail to start or serious problems such as coredump.
2. Install the CUDA driver compatible with the actual GPU device on the system running Paddle Serving, and install the basic library compatible with the CUDA/CuDNN version used during compilation. If the version of CUDA/CuDNN installed on the system running Paddle Serving is lower than the version used at compile time, it may cause some cuda function call failures and other problems.
B
barrierye 已提交
112 113


J
Jiawei Wang 已提交
114
The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
B
barrierye 已提交
115 116 117 118 119 120

|        |  CUDA   |          CuDNN           | NCCL2  |
| :----: | :-----: | :----------------------: | :----: |
| CUDA 8 | 8.0.61  | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4  |
| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 |

J
Jiawei Wang 已提交
121
### How to make the compiler detect the CuDNN library
B
barrierye 已提交
122

J
Jiawei Wang 已提交
123
Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN.
B
barrierye 已提交
124

J
Jiawei Wang 已提交
125
### How to make the compiler detect the nccl library
B
barrierye 已提交
126

J
Jiawei Wang 已提交
127
After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example):
B
barrierye 已提交
128 129 130 131 132 133

```shell
export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH
```