TensorRT_Dynamic_Shape_EN.md 8.1 KB
Newer Older
F
felixhjh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# How to configure TensorRT dynamic shape
([简体中文](./TensorRT_Dynamic_Shape_CN.md)|English)

## Overview

After enabling TensorRT `--use_trt` in Pipeline/C++. Regarding how to configure the dynamic shape, the following will give examples of Pipeline Serving and C++ Serving respectively

The following is the dynamic shape api
```
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
```
For detail, please refer to API doc [C++](https://paddleinference.paddlepaddle.org.cn/api_reference/cxx_api_doc/Config/GPUConfig.html#tensorrt)/[Python](https://paddleinference.paddlepaddle.org.cn/api_reference/python_api_doc/Config/GPUConfig.html#tensorrt)

### C++ Serving
19 20

1. Method 1: 
F
felixhjh 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
Modify the following code in `**/paddle_inference/paddle/include/paddle_engine.h`

```
    if (engine_conf.has_use_trt() && engine_conf.use_trt()) {
      config.SwitchIrOptim(true);
      if (!engine_conf.has_use_gpu() || !engine_conf.use_gpu()) {
        config.EnableUseGpu(50, gpu_id);
        if (engine_conf.has_gpu_multi_stream() &&
            engine_conf.gpu_multi_stream()) {
          config.EnableGpuMultiStream();
        }
      }
      config.EnableTensorRtEngine((1 << 30) + (1 << 29),
                                  max_batch,
                                  min_subgraph_size,
                                  precision_type,
                                  true,
                                  FLAGS_use_calib);
      // set trt dynamic shape
      {
        int bsz = 1;
        int max_seq_len = 512;
        std::map<std::string, std::vector<int>> min_input_shape;
        std::map<std::string, std::vector<int>> max_input_shape;
        std::map<std::string, std::vector<int>> optim_input_shape;
        int hidden_size = 0;

        min_input_shape["stack_0.tmp_0"] = {1, 16, 1, 1};
        min_input_shape["stack_1.tmp_0"] = {1, 2, 1, 1};
        min_input_shape["input_mask"] = {1, 1, 1};
        min_input_shape["_generated_var_64"] = {1, 1, 768};
        min_input_shape["fc_0.tmp_0"] = {1, 1, 768};
        min_input_shape["_generated_var_87"] = {1, 1, 768};
        min_input_shape["tmp_175"] = {1, 1, 768};
        min_input_shape["c_allreduce_sum_0.tmp_0"] = {1,1, 12288};
        min_input_shape["embedding_1.tmp_0"] = {1, 1, 12288};


        max_input_shape["stack_0.tmp_0"] = {bsz, 16, max_seq_len, max_seq_len};
        max_input_shape["stack_1.tmp_0"] = {bsz, 2, max_seq_len, max_seq_len};
        max_input_shape["input_mask"] = {bsz, max_seq_len, max_seq_len};
        max_input_shape["_generated_var_64"] = {bsz, max_seq_len, 768};
        max_input_shape["fc_0.tmp_0"] = {bsz, max_seq_len, 768};
        max_input_shape["_generated_var_87"] = {bsz, max_seq_len, 768};
        max_input_shape["tmp_175"] = {bsz, max_seq_len, 768};
        max_input_shape["c_allreduce_sum_0.tmp_0"] = {bsz,max_seq_len, 12288};
        max_input_shape["embedding_1.tmp_0"] = {bsz, max_seq_len, 12288};

        int g1 = 0;
        int g2 = 0;
        int t1 = 0;
        int t2 = 0;
        std::string var_name = "_generated_var_";
        std::string tmp_name = "tmp_";
        for (int i = 0; i < 44; ++i) {
          if (i > 32) {
            hidden_size = 768;
            g1 = 2*i-1;
            g2 = 2*i;
            t1 = 4*i-1;
            t2 = 4*i;
            min_input_shape[var_name+std::to_string(g1)] = {1, 1, hidden_size};
            min_input_shape[var_name+std::to_string(g2)] = {1, 1, hidden_size};
            min_input_shape[tmp_name+std::to_string(t1)] = {1, 1, hidden_size};
            min_input_shape[tmp_name+std::to_string(t2)] = {1, 1, hidden_size};
            max_input_shape[var_name+std::to_string(g1)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[var_name+std::to_string(g2)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[tmp_name+std::to_string(t1)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[tmp_name+std::to_string(t2)] = {bsz, max_seq_len, hidden_size};
          }
          if (i <32) {
            hidden_size = 12288;
            g1 = 2*i;
            g2 = 2*i+1;
            t1 = 4*i;
            t2 = 4*i+3;
            min_input_shape[var_name+std::to_string(g1)] = {1, 1, hidden_size};
            min_input_shape[var_name+std::to_string(g2)] = {1, 1, hidden_size};
            min_input_shape[tmp_name+std::to_string(t1)] = {1, 1, hidden_size};
            min_input_shape[tmp_name+std::to_string(t2)] = {1, 1, hidden_size};
            max_input_shape[var_name+std::to_string(g1)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[var_name+std::to_string(g2)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[tmp_name+std::to_string(t1)] = {bsz, max_seq_len, hidden_size};
            max_input_shape[tmp_name+std::to_string(t2)] = {bsz, max_seq_len, hidden_size};
          }
        }
        optim_input_shape = max_input_shape;
        config.SetTRTDynamicShapeInfo(
        min_input_shape, max_input_shape, optim_input_shape);
      }
      LOG(INFO) << "create TensorRT predictor";
    }
```

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
2. Method 2:
Refer to the code of `**/python/paddle_serving_server/serve.py` below to generate the configuration information, 
and using method `server.set_trt_dynamic_shape_info(info)` to set information.

```
def set_ocr_dynamic_shape_info():
    info = []
    min_input_shape = {
        "x": [1, 3, 50, 50],
        "conv2d_182.tmp_0": [1, 1, 20, 20],
        "nearest_interp_v2_2.tmp_0": [1, 1, 20, 20],
        "nearest_interp_v2_3.tmp_0": [1, 1, 20, 20],
        "nearest_interp_v2_4.tmp_0": [1, 1, 20, 20],
        "nearest_interp_v2_5.tmp_0": [1, 1, 20, 20]
    }
    max_input_shape = {
        "x": [1, 3, 1536, 1536],
        "conv2d_182.tmp_0": [20, 200, 960, 960],
        "nearest_interp_v2_2.tmp_0": [20, 200, 960, 960],
        "nearest_interp_v2_3.tmp_0": [20, 200, 960, 960],
        "nearest_interp_v2_4.tmp_0": [20, 200, 960, 960],
        "nearest_interp_v2_5.tmp_0": [20, 200, 960, 960],
    }
    opt_input_shape = {
        "x": [1, 3, 960, 960],
        "conv2d_182.tmp_0": [3, 96, 240, 240],
        "nearest_interp_v2_2.tmp_0": [3, 96, 240, 240],
        "nearest_interp_v2_3.tmp_0": [3, 24, 240, 240],
        "nearest_interp_v2_4.tmp_0": [3, 24, 240, 240],
        "nearest_interp_v2_5.tmp_0": [3, 24, 240, 240],
    }
    det_info = {
        "min_input_shape": min_input_shape,
        "max_input_shape": max_input_shape,
        "opt_input_shape": opt_input_shape,
    }
    info.append(det_info)
    min_input_shape = {"x": [1, 3, 32, 10], "lstm_1.tmp_0": [1, 1, 128]}
    max_input_shape = {"x": [50, 3, 32, 1000], "lstm_1.tmp_0": [500, 50, 128]}
    opt_input_shape = {"x": [6, 3, 32, 100], "lstm_1.tmp_0": [25, 5, 128]}
    rec_info = {
        "min_input_shape": min_input_shape,
        "max_input_shape": max_input_shape,
        "opt_input_shape": opt_input_shape,
    }
    info.append(rec_info)
    return info
```
F
felixhjh 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

### Pipeline Serving

Modify the following code in `**/python/paddle_serving_app/local_predict.py`

```
if use_trt:
    config.enable_tensorrt_engine(
        precision_mode=precision_type,
        workspace_size=1 << 20,
        max_batch_size=32,
        min_subgraph_size=3,
        use_static=False,
        use_calib_mode=False)
    head_number = 12

    names = [
        "placeholder_0", "placeholder_1", "placeholder_2", "stack_0.tmp_0"
    ]
    min_input_shape = [1, 1, 1]
    max_input_shape = [100, 128, 1]
    opt_input_shape = [10, 60, 1]

    config.set_trt_dynamic_shape_info(
        {
            names[0]: min_input_shape,
            names[1]: min_input_shape,
            names[2]: min_input_shape,
            names[3]: [1, head_number, 1, 1]
        }, {
            names[0]: max_input_shape,
            names[1]: max_input_shape,
            names[2]: max_input_shape,
            names[3]: [100, head_number, 128, 128]
        }, {
            names[0]: opt_input_shape,
            names[1]: opt_input_shape,
            names[2]: opt_input_shape,
            names[3]: [10, head_number, 60, 60]
        })
                
204
```