ocr_debugger_server.py 4.0 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
from paddle_serving_server_gpu.web_service import WebService
from paddle_serving_app.local_predict import Debugger
import time
import re
import base64


class OCRService(WebService):
D
dyning 已提交
33
    def init_det_debugger(self, det_model_config):
W
wangjiawei04 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.det_client = Debugger()
        self.det_client.load_model_config(
            det_model_config, gpu=True, profile=False)
        self.ocr_reader = OCRReader()

    def preprocess(self, feed=[], fetch=[]):
        data = base64.b64decode(feed[0]["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        ori_h, ori_w, _ = im.shape
        det_img = self.det_preprocess(im)
        _, new_h, new_w = det_img.shape
        det_img = det_img[np.newaxis, :]
        det_img = det_img.copy()
        det_out = self.det_client.predict(
            feed={"image": det_img}, fetch=["concat_1.tmp_0"])
        filter_func = FilterBoxes(10, 10)
        post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })
        sorted_boxes = SortedBoxes()
        ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
        dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
        dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
        dt_boxes = sorted_boxes(dt_boxes)
        get_rotate_crop_image = GetRotateCropImage()
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        if len(img_list) == 0:
            return [], []
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
            imgs[id] = norm_img
W
wangjiawei04 已提交
85
        feed = {"image": imgs.copy()}
W
wangjiawei04 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
        return feed, fetch

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": res_lst}
        return res


ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
ocr_service.prepare_server(workdir="workdir", port=9292)
D
dyning 已提交
101
ocr_service.init_det_debugger(det_model_config="ocr_det_model")
W
wangjiawei04 已提交
102 103
ocr_service.run_debugger_service(gpu=True)
ocr_service.run_web_service()