Introduction_CN.md 9.1 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# C++ Serving 简要介绍
## 适用场景
C++ Serving主打性能,如果您想搭建企业级的高性能线上推理服务,对高并发、低延时有一定的要求。C++ Serving框架可能会更适合您。目前无论是使用同步/异步模型,[C++ Serving与TensorFlow Serving性能对比](Benchmark_CN.md)均有优势。

C++ Serving网络框架使用brpc,核心执行引擎是基于C/C++编写,并且提供强大的工业级应用能力,包括模型热加载、模型加密部署、A/B Test、多模型组合、同步/异步模式、支持多语言多协议Client等功能。

## 1.网络框架(BRPC)
C++ Serving采用[brpc框架](https://github.com/apache/incubator-brpc)进行Client/Server端的通信。brpc是百度开源的一款PRC网络框架,具有高并发、低延时等特点,已经支持了包括百度在内上百万在线预估实例、上千个在线预估服务,稳定可靠。与gRPC网络框架相比,具有更低的延时,更高的并发性能,且底层支持<mark>**brpc/grpc/http+json/http+proto**</mark>等多种协议;缺点是跨操作系统平台能力不足。详细的框架性能开销见[C++ Serving框架性能测试](Frame_Performance_CN.md)

## 2.核心执行引擎
C++ Serving的核心执行引擎是一个有向无环图(也称作[DAG图](DAG_CN.md)),DAG图中的每个节点(在PaddleServing中,借用模型中operator算子的概念,将DAG图中的节点也称为[OP](OP_CN.md))代表预估服务的一个环节,DAG图支持多个OP按照串并联的方式进行组合,从而实现在一个服务中完成多个模型的预测整合最终产出结果。整个框架原理如下图所示,可分为Client Side 和 Server Side。
<p align="center">
    <br>
<img src='../images/design_doc.png'">
    <br>
<p>

### 2.1 Client Side
如图所示,Client端通过Pybind API接口将Request请求,按照ProtoBuf协议进行序列化后,经由BRPC网络框架Client端发送给Server端。此时,Client端等待Server端的返回数据并反序列化为正常的数据,之后将结果返给Client调用方。

### 2.2 Server Side
Server端接收到序列化的Request请求后,反序列化正常数据,进入图执行引擎,按照定义好的DAG图结构,执行每个OP环节的操作(每个OP环节的处理由用户定义,即可以只是单纯的数据处理,也可以是调用预测引擎用不同的模型对输入数据进行预测),当DAG图中所有OP环节均执行完成后,将结果数据序列化后返回给Client端。

### 2.3 通信数据格式ProtoBuf
Protocol Buffers(简称Protobuf) ,是Google出品的序列化框架,与开发语言无关,和平台无关,具有良好的可扩展性。Protobuf和所有的序列化框架一样,都可以用于数据存储、通讯协议。Protobuf支持生成代码的语言包括Java、Python、C++、Go、JavaNano、Ruby、C#。Portobuf的序列化的结果体积要比XML、JSON小很多,速度比XML、JSON快很多。

在C++ Serving中定义了Client Side 和 Server Side之间通信的ProtoBuf,详细的字段的介绍见《[C++ Serving ProtoBuf简介](Inference_Protocols_CN.md)》。

## 3.Server端特性
### 3.1 启动Server端
Server端的核心是一个由项目代码编译产生的名称为serving的二进制可执行文件,启动serving时需要用户指定一些参数(<mark>**例如,网络IP和Port端口、brpc线程数、使用哪个显卡、模型文件路径、模型是否开启trt、XPU推理、模型精度设置等等**</mark>),有些参数是通过命令行直接传入的,还有一些是写在指定的配置文件中配置文件中。

为了方便用户快速的启动C++ Serving的Server端,除了用户自行修改配置文件并通过命令行传参运行serving二进制可执行文件以外,我们也提供了另外一种通过python脚本启动的方式。python脚本启动本质上仍是运行serving二进制可执行文件,但python脚本中会自动完成两件事:1、配置文件的生成;2、根据需要配置的参数,生成命令行,通过命令行的方式,传入参数信息并运行serving二进制可执行文件。

T
TeslaZhao 已提交
35
更多详细说明和示例,请参考[C++ Serving 参数配置和启动的详细说明](../Serving_Configure_CN.md)
H
HexToString 已提交
36 37 38 39 40 41 42 43

### 3.2 同步/异步模式
同步模式比较简单直接,适用于模型预测时间短,单个Request请求的batch已经比较大的情况。
同步模型下,Server端线程数N = 模型预测引擎数N = 同时处理Request请求数N,超发的Request请求需要等待当前线程处理结束后才能得到响应和处理。
<p align="center">
<img src='../images/syn_mode.png' width = "350" height = "300">
<p>
异步模型主要适用于模型支持多batch(最大batch数M可通过配置选项指定),单个Request请求的batch较小(batch << M),单次预测时间较长的情况。
H
HexToString 已提交
44
异步模型下,Server端N个线程只负责接收Request请求,实际调用预测引擎是在异步框架的线程池中,异步框架的线程数可以由配置选项来指定。为了方便理解,我们假设每个Request请求的batch均为1,此时异步框架会尽可能多得从请求池中取n(n≤M)个Request并将其拼装为1个Request(batch=n),调用1次预测引擎,得到1个Response(batch = n),再将其对应拆分为n个Response作为返回结果。
H
HexToString 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
<p align="center">
<img src='../images/asyn_mode.png'">
<p>

更多关于模式参数配置以及性能调优的介绍见《[C++ Serving性能调优](Performance_Tuning_CN.md)》。

### 3.3 多模型组合
当用户需要多个模型组合处理结果来作为一个服务接口对外暴露时,通常的解决办法是搭建内外两层服务,内层服务负责跑模型预测,外层服务负责串联和前后处理。当传输的数据量不大时,这样做的性能开销并不大,但当输出的数据量较大时,因为网络传输而带来的性能开销不容忽视(实测单次传输40MB数据时,RPC耗时为160-170ms)。

<p align="center">
    <br>
<img src='../images/multi_model.png'>
    <br>
<p>

C++ Serving框架支持[自定义DAG图](Model_Ensemble_CN.md)的方式来表示多模型之间串并联组合关系,也支持用户[使用C++开发自定义OP节点](OP_CN.md)。相比于使用内外两层服务来提供多模型组合处理的方式,由于节省了一次RPC网络传输的开销,把多模型在一个服务中处理性能上会有一定的提升,尤其当RPC通信传输的数据量较大时。

### 3.4 模型管理与热加载
C++ Serving的引擎支持模型管理功能,支持多种模型和模型不同版本的管理。为了保证在模型更换期间推理服务的可用性,需要在服务不中断的情况下对模型进行热加载。C++ Serving对该特性进行了支持,并提供了一个监控产出模型更新本地模型的工具,具体例子请参考《[C++ Serving中的模型热加载](Hot_Loading_CN.md)》。

### 3.5 模型加解密
C++ Serving采用对称加密算法对模型进行加密,在服务加载模型过程中在内存中解密。目前,提供基础的模型安全能力,并不保证模型绝对安全性,用户可根据我们的设计加以完善,实现更高级别的安全性。说明文档参考《[C++ Serving加密模型预测](Encryption_CN.md)》。

## 4.Client端特性
### 4.1 A/B Test
在对模型进行充分的离线评估后,通常需要进行在线A/B测试,来决定是否大规模上线服务。下图为使用Paddle Serving做A/B测试的基本结构,Client端做好相应的配置后,自动将流量分发给不同的Server,从而完成A/B测试。具体例子请参考《[如何使用Paddle Serving做ABTEST](ABTest_CN.md)》。

<p align="center">
    <br>
<img src='../images/abtest.png' width = "345" height = "230">
    <br>
<p>

### 4.2 多语言多协议Client
BRPC网络框架支持[多种底层通信协议](#1网络框架(BRPC)),即使用目前的C++ Serving框架的Server端,各种语言的Client端,甚至使用curl的方式,只要按照上述协议(具体支持的协议见[brpc官网](https://github.com/apache/incubator-brpc))封装数据并发送,Server端就能够接收、处理和返回结果。

对于支持的各种协议我们提供了部分的Client SDK示例供用户参考和使用,用户也可以根据自己的需求去开发新的Client SDK,也欢迎用户添加其他语言/协议(例如GRPC-Go、GRPC-C++ HTTP2-Go、HTTP2-Java等)Client SDK到我们的仓库供其他开发者借鉴和参考。

| 通信协议     | 速度 | 是否支持 | 是否提供Client SDK |
|-------------|-----|---------|-------------------|
| BRPC        | 最快 | 支持     | [C++](../../core/general-client/README_CN.md)[Python(Pybind方式)](../../examples/C++/fit_a_line/README_CN.md)  |
| HTTP2+Proto | 快   | 支持     | coming soon           |
| GRPC        | 快   | 支持     | [Java](../../java/README_CN.md)[Python](../../examples/C++/fit_a_line/README_CN.md)  |
| HTTP1+Proto | 一般  | 支持     | [Java](../../java/README_CN.md)[Python](../../examples/C++/fit_a_line/README_CN.md)  |
| HTTP1+Json  | 慢   | 支持     | [Java](../../java/README_CN.md)[Python](../../examples/C++/fit_a_line/README_CN.md)[Curl](Http_Service_CN.md)  |