serve.py 2.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
    Host a trained paddle model with one line command
    Example:
        python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
"""
import argparse
G
guru4elephant 已提交
21
from multiprocessing import Pool, Process
22
from paddle_serving_server_gpu import serve_args
M
MRXLT 已提交
23 24


25
def start_gpu_card_model(gpuid, args):
G
guru4elephant 已提交
26
    gpuid = int(gpuid)
G
guru4elephant 已提交
27 28 29 30
    device = "gpu"
    port = args.port
    if gpuid == -1:
        device = "cpu"
G
guru4elephant 已提交
31
    elif gpuid >= 0:
G
guru4elephant 已提交
32
        port = args.port + gpuid
M
MRXLT 已提交
33 34
    thread_num = args.thread
    model = args.model
G
guru4elephant 已提交
35
    workdir = "{}_{}".format(args.workdir, gpuid)
M
MRXLT 已提交
36 37 38 39 40 41 42 43 44 45

    if model == "":
        print("You must specify your serving model")
        exit(-1)

    import paddle_serving_server_gpu as serving
    op_maker = serving.OpMaker()
    read_op = op_maker.create('general_reader')
    general_infer_op = op_maker.create('general_infer')
    general_response_op = op_maker.create('general_response')
G
guru4elephant 已提交
46
    
M
MRXLT 已提交
47 48 49 50 51 52 53 54 55 56 57
    op_seq_maker = serving.OpSeqMaker()
    op_seq_maker.add_op(read_op)
    op_seq_maker.add_op(general_infer_op)
    op_seq_maker.add_op(general_response_op)

    server = serving.Server()
    server.set_op_sequence(op_seq_maker.get_op_sequence())
    server.set_num_threads(thread_num)

    server.load_model_config(model)
    server.prepare_server(workdir=workdir, port=port, device=device)
G
guru4elephant 已提交
58 59
    if gpuid >= 0:
        server.set_gpuid(gpuid)
M
MRXLT 已提交
60 61
    server.run_server()

62 63 64 65 66 67
def start_multi_card(args):
    gpus = ""
    if args.gpu_ids == "":
        gpus = os.environ["CUDA_VISIBLE_DEVICES"]
    else:
        gpus = args.gpu_ids.split(",")
G
guru4elephant 已提交
68 69 70 71
    if len(gpus) <= 0:
        start_gpu_card_model(-1)
    else:
        gpu_processes = []
G
guru4elephant 已提交
72
        for i, gpu_id in enumerate(gpus):
73
            p = Process(target=start_gpu_card_model, args=(i, args, ))
G
guru4elephant 已提交
74 75 76 77 78 79
            gpu_processes.append(p)
        for p in gpu_processes:
            p.start()
        for p in gpu_processes:
            p.join()
    
80 81 82
if __name__ == "__main__":
    args = serve_args()
    start_multi_card(args)