ocr_rpc_client.py 6.7 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
import time
import re


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


def get_rotate_crop_image(img, points):
    #img = cv2.imread(img)
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    img_crop_width = int(np.linalg.norm(points[0] - points[1]))
    img_crop_height = int(np.linalg.norm(points[0] - points[3]))
    pts_std = np.float32([[0, 0], [img_crop_width, 0], \
                          [img_crop_width, img_crop_height], [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img_crop,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


def read_det_box_file(filename):
    with open(filename, 'r') as f:
        line = f.readline()
        a, b, c = int(line.split(' ')[0]), int(line.split(' ')[1]), int(
            line.split(' ')[2])
        dt_boxes = np.zeros((a, b, c)).astype(np.float32)
        line = f.readline()
        for i in range(a):
            for j in range(b):
                line = f.readline()
                dt_boxes[i, j, 0], dt_boxes[i, j, 1] = float(
                    line.split(' ')[0]), float(line.split(' ')[1])
            line = f.readline()


def resize_norm_img(img, max_wh_ratio):
    import math
    imgC, imgH, imgW = 3, 32, 320
    imgW = int(32 * max_wh_ratio)
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


def main():
    client1 = Client()
    client1.load_client_config("ocr_det_client/serving_client_conf.prototxt")
    client1.connect(["127.0.0.1:9293"])

    client2 = Client()
    client2.load_client_config("ocr_rec_client/serving_client_conf.prototxt")
    client2.connect(["127.0.0.1:9292"])

    read_image_file = File2Image()
    preprocess = Sequential([
        ResizeByFactor(32, 960), Div(255),
        Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
            (2, 0, 1))
    ])
    post_func = DBPostProcess({
        "thresh": 0.3,
        "box_thresh": 0.5,
        "max_candidates": 1000,
        "unclip_ratio": 1.5,
        "min_size": 3
    })

    filter_func = FilterBoxes(10, 10)
    ocr_reader = OCRReader()
    files = [
        "./imgs/{}".format(f) for f in os.listdir('./imgs')
        if re.match(r'[0-9]+.*\.jpg|[0-9]+.*\.png', f)
    ]
    #files = ["2.jpg"]*30
    #files = ["rctw/rctw/train/images/image_{}.jpg".format(i) for i in range(500)]
    time_all = 0
    time_det_all = 0
    time_rec_all = 0
    for name in files:
        #print(name)
        im = read_image_file(name)
        ori_h, ori_w, _ = im.shape
        time1 = time.time()
        img = preprocess(im)
        _, new_h, new_w = img.shape
        ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
        #print(new_h, new_w, ori_h, ori_w)
        time_before_det = time.time()
        outputs = client1.predict(feed={"image": img}, fetch=["concat_1.tmp_0"])
        time_after_det = time.time()
        time_det_all += (time_after_det - time_before_det)
        #print(outputs)
        dt_boxes_list = post_func(outputs["concat_1.tmp_0"], [ratio_list])
        dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
        dt_boxes = sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for img in img_list:
            norm_img = resize_norm_img(img, max_wh_ratio)
            #norm_img = norm_img[np.newaxis, :]
            feed = {"image": norm_img}
            feed_list.append(feed)
        #fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
        fetch = ["ctc_greedy_decoder_0.tmp_0"]
        time_before_rec = time.time()
        if len(feed_list) == 0:
            continue
        fetch_map = client2.predict(feed=feed_list, fetch=fetch)
        time_after_rec = time.time()
        time_rec_all += (time_after_rec - time_before_rec)
        rec_res = ocr_reader.postprocess(fetch_map)
        #for res in rec_res:
        #    print(res[0].encode("utf-8"))
        time2 = time.time()
        time_all += (time2 - time1)
    print("rpc+det time: {}".format(time_all / len(files)))


if __name__ == '__main__':
    main()