ctr_prediction.cpp 10.2 KB
Newer Older
X
xulongteng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <string>
#include <thread>  // NOLINT
#include "sdk-cpp/ctr_prediction.pb.h"
#include "sdk-cpp/include/common.h"
#include "sdk-cpp/include/predictor_sdk.h"
using baidu::paddle_serving::sdk_cpp::Predictor;
using baidu::paddle_serving::sdk_cpp::PredictorApi;
using baidu::paddle_serving::predictor::ctr_prediction::Request;
using baidu::paddle_serving::predictor::ctr_prediction::Response;
using baidu::paddle_serving::predictor::ctr_prediction::CTRReqInstance;
using baidu::paddle_serving::predictor::ctr_prediction::CTRResInstance;

W
wangguibao 已提交
33
int batch_size = 16;
X
xulongteng 已提交
34 35 36
int sparse_num = 26;
int dense_num = 13;
int hash_dim = 1000001;
W
wangguibao 已提交
37 38 39 40 41 42 43 44

DEFINE_int32(batch_size, 50, "Set the batch size of test file.");
DEFINE_int32(concurrency, 1, "Set the max concurrency of requests");
DEFINE_int32(repeat, 1, "Number of data samples iteration count. Default 1");
DEFINE_bool(enable_profiling,
            true,
            "Enable profiling. Will supress a lot normal output");

X
xulongteng 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
std::vector<float> cont_min = {0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> cont_diff = {
    20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50};
char* data_filename = "./data/ctr_prediction/data.txt";
std::atomic<int> g_concurrency(0);
std::vector<std::vector<int>> response_time;

std::vector<std::string> split(const std::string& str,
                               const std::string& pattern) {
  std::vector<std::string> res;
  if (str == "") return res;
  std::string strs = str + pattern;
  size_t pos = strs.find(pattern);
  while (pos != strs.npos) {
    std::string temp = strs.substr(0, pos);
    res.push_back(temp);
    strs = strs.substr(pos + 1, strs.size());
    pos = strs.find(pattern);
  }
  return res;
}

W
wangguibao 已提交
67 68 69 70 71 72 73 74 75
/**
 * Simulate CPython hash function on string objects
 *
 * Our model training process use this function to convert string objects to
 * unique ids.
 *
 * See string_hash() in
 * https://svn.python.org/projects/python/trunk/Objects/stringobject.c
 */
X
xulongteng 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
int64_t hash(std::string str) {
  int64_t len;
  unsigned char* p;
  int64_t x;

  len = str.size();
  p = (unsigned char*)str.c_str();
  x = *p << 7;
  while (--len >= 0) {
    x = (1000003 * x) ^ *p++;
  }
  x ^= str.size();
  if (x == -1) {
    x = -2;
  }
  return x;
}

int create_req(Request* req,
               const std::vector<std::string>& data_list,
W
wangguibao 已提交
96
               int start_index,
X
xulongteng 已提交
97 98 99 100 101 102 103
               int batch_size) {
  for (int i = 0; i < batch_size; ++i) {
    CTRReqInstance* ins = req->add_instances();
    if (!ins) {
      LOG(ERROR) << "Failed create req instance";
      return -1;
    }
W
wangguibao 已提交
104

X
xulongteng 已提交
105
    // add data
W
wangguibao 已提交
106
    // avoid out of boundary
W
wangguibao 已提交
107
    int cur_index = start_index + i;
W
wangguibao 已提交
108 109 110
    if (cur_index >= data_list.size()) {
      cur_index = cur_index % data_list.size();
    }
W
wangguibao 已提交
111

W
wangguibao 已提交
112
    std::vector<std::string> feature_list = split(data_list[cur_index], "\t");
X
xulongteng 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    for (int fi = 0; fi < dense_num; fi++) {
      if (feature_list[fi] == "") {
        ins->add_dense_ids(0.0);
      } else {
        float dense_id = std::stof(feature_list[fi]);
        dense_id = (dense_id - cont_min[fi]) / cont_diff[fi];
        ins->add_dense_ids(dense_id);
      }
    }
    for (int fi = dense_num; fi < (dense_num + sparse_num); fi++) {
      int64_t sparse_id =
          hash(std::to_string(fi) + feature_list[fi]) % hash_dim;
      if (sparse_id < 0) {
        // diff between c++ and python
        sparse_id += hash_dim;
      }
      ins->add_sparse_ids(sparse_id);
    }
  }
  return 0;
}
W
wangguibao 已提交
134

X
xulongteng 已提交
135 136 137 138 139 140 141 142 143 144 145
void print_res(const Request& req,
               const Response& res,
               std::string route_tag,
               uint64_t elapse_ms) {
  if (res.err_code() != 0) {
    LOG(ERROR) << "Get result fail :" << res.err_msg();
    return;
  }
  for (uint32_t i = 0; i < res.predictions_size(); ++i) {
    const CTRResInstance& res_ins = res.predictions(i);
    std::ostringstream oss;
W
wangguibao 已提交
146
    oss << "[" << res_ins.prob0() << " " << res_ins.prob1() << "]";
X
xulongteng 已提交
147 148 149
    LOG(INFO) << "Receive result " << oss.str();
  }
  LOG(INFO) << "Succ call predictor[ctr_prediction_service], the tag is: "
W
wangguibao 已提交
150
            << route_tag << ", elapse_ms: " << elapse_ms;
X
xulongteng 已提交
151 152 153 154 155 156 157 158 159
}

void thread_worker(PredictorApi* api,
                   int thread_id,
                   const std::vector<std::string>& data_list) {
  // init
  Request req;
  Response res;
  std::string line;
W
wangguibao 已提交
160 161 162 163 164
  int start_index = 0;

  api->thrd_initialize();

  while (true) {
X
xulongteng 已提交
165
    api->thrd_clear();
W
wangguibao 已提交
166

X
xulongteng 已提交
167 168 169 170 171
    Predictor* predictor = api->fetch_predictor("ctr_prediction_service");
    if (!predictor) {
      LOG(ERROR) << "Failed fetch predictor: ctr_prediction_service";
      return;
    }
W
wangguibao 已提交
172

X
xulongteng 已提交
173 174
    req.Clear();
    res.Clear();
W
wangguibao 已提交
175

X
xulongteng 已提交
176
    // wait for other thread
W
wangguibao 已提交
177
    while (g_concurrency.load() >= FLAGS_concurrency) {
X
xulongteng 已提交
178 179 180
    }
    g_concurrency++;
    LOG(INFO) << "Current concurrency " << g_concurrency.load();
W
wangguibao 已提交
181 182

    if (create_req(&req, data_list, start_index, FLAGS_batch_size) != 0) {
X
xulongteng 已提交
183 184
      return;
    }
W
wangguibao 已提交
185 186 187 188 189
    start_index += FLAGS_batch_size;

    timeval start;
    gettimeofday(&start, NULL);

X
xulongteng 已提交
190 191 192 193
    if (predictor->inference(&req, &res) != 0) {
      LOG(ERROR) << "failed call predictor with req:" << req.ShortDebugString();
      return;
    }
W
wangguibao 已提交
194 195
    g_concurrency--;

X
xulongteng 已提交
196 197 198
    timeval end;
    gettimeofday(&end, NULL);
    uint64_t elapse_ms = (end.tv_sec * 1000 + end.tv_usec / 1000) -
W
wangguibao 已提交
199 200
                         (start.tv_sec * 1000 + start.tv_usec / 1000);

X
xulongteng 已提交
201
    response_time[thread_id].push_back(elapse_ms);
W
wangguibao 已提交
202 203 204 205 206

    if (!FLAGS_enable_profiling) {
      print_res(req, res, predictor->tag(), elapse_ms);
    }

X
xulongteng 已提交
207 208
    LOG(INFO) << "Done. Current concurrency " << g_concurrency.load();
  }
W
wangguibao 已提交
209

X
xulongteng 已提交
210 211
  api->thrd_finalize();
}
W
wangguibao 已提交
212

X
xulongteng 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void calc_time(int server_concurrency, int batch_size) {
  std::vector<int> time_list;
  for (auto a : response_time) {
    time_list.insert(time_list.end(), a.begin(), a.end());
  }
  LOG(INFO) << "Total request : " << (time_list.size());
  LOG(INFO) << "Batch size : " << batch_size;
  LOG(INFO) << "Max concurrency : " << server_concurrency;
  float total_time = 0;
  float max_time = 0;
  float min_time = 1000000;
  for (int i = 0; i < time_list.size(); ++i) {
    total_time += time_list[i];
    if (time_list[i] > max_time) max_time = time_list[i];
    if (time_list[i] < min_time) min_time = time_list[i];
  }
  float mean_time = total_time / (time_list.size());
  float var_time;
  for (int i = 0; i < time_list.size(); ++i) {
    var_time += (time_list[i] - mean_time) * (time_list[i] - mean_time);
  }
  var_time = var_time / time_list.size();
  LOG(INFO) << "Total time : " << total_time / server_concurrency
            << " Variance : " << var_time << " Max time : " << max_time
            << " Min time : " << min_time;
  float qps = 0.0;
  if (total_time > 0)
    qps = (time_list.size() * 1000) / (total_time / server_concurrency);
  LOG(INFO) << "QPS: " << qps << "/s";
  LOG(INFO) << "Latency statistics: ";
  sort(time_list.begin(), time_list.end());
  int percent_pos_50 = time_list.size() * 0.5;
  int percent_pos_80 = time_list.size() * 0.8;
  int percent_pos_90 = time_list.size() * 0.9;
  int percent_pos_99 = time_list.size() * 0.99;
  int percent_pos_999 = time_list.size() * 0.999;
  if (time_list.size() != 0) {
    LOG(INFO) << "Mean time : " << mean_time;
    LOG(INFO) << "50 percent ms: " << time_list[percent_pos_50];
    LOG(INFO) << "80 percent ms: " << time_list[percent_pos_80];
    LOG(INFO) << "90 percent ms: " << time_list[percent_pos_90];
    LOG(INFO) << "99 percent ms: " << time_list[percent_pos_99];
    LOG(INFO) << "99.9 percent ms: " << time_list[percent_pos_999];
  } else {
    LOG(INFO) << "N/A";
  }
}
int main(int argc, char** argv) {
W
wangguibao 已提交
261 262
  google::ParseCommandLineFlags(&argc, &argv, true);

X
xulongteng 已提交
263 264
  // initialize
  PredictorApi api;
W
wangguibao 已提交
265 266
  response_time.resize(FLAGS_concurrency);

X
xulongteng 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
#ifdef BCLOUD
  logging::LoggingSettings settings;
  settings.logging_dest = logging::LOG_TO_FILE;
  std::string log_filename(argv[0]);
  log_filename = log_filename.substr(log_filename.find_last_of('/') + 1);
  settings.log_file = (std::string("./log/") + log_filename + ".log").c_str();
  settings.delete_old = logging::DELETE_OLD_LOG_FILE;
  logging::InitLogging(settings);
  logging::ComlogSinkOptions cso;
  cso.process_name = log_filename;
  cso.enable_wf_device = true;
  logging::ComlogSink::GetInstance()->Setup(&cso);
#else
  struct stat st_buf;
  int ret = 0;
  if ((ret = stat("./log", &st_buf)) != 0) {
    mkdir("./log", 0777);
    ret = stat("./log", &st_buf);
    if (ret != 0) {
      LOG(WARNING) << "Log path ./log not exist, and create fail";
      return -1;
    }
  }
  FLAGS_log_dir = "./log";
  google::InitGoogleLogging(strdup(argv[0]));
  FLAGS_logbufsecs = 0;
  FLAGS_logbuflevel = -1;
#endif
  // predictor conf
  if (api.create("./conf", "predictors.prototxt") != 0) {
    LOG(ERROR) << "Failed create predictors api!";
    return -1;
  }
W
wangguibao 已提交
300 301 302 303 304 305 306 307 308

  LOG(INFO) << "data sample file: " << data_filename;
  LOG(INFO) << "enable_profiling: " << FLAGS_enable_profiling;

  if (FLAGS_enable_profiling) {
    LOG(INFO) << "In profiling mode, lot of normal output will be supressed. "
              << "Use --enable_profiling=false to turn off this mode";
  }

X
xulongteng 已提交
309 310 311 312 313 314
  // read data
  std::ifstream data_file(data_filename);
  if (!data_file) {
    std::cout << "read file error \n" << std::endl;
    return -1;
  }
W
wangguibao 已提交
315

X
xulongteng 已提交
316 317 318 319 320
  std::vector<std::string> data_list;
  std::string line;
  while (getline(data_file, line)) {
    data_list.push_back(line);
  }
W
wangguibao 已提交
321

X
xulongteng 已提交
322 323
  // create threads
  std::vector<std::thread*> thread_pool;
W
wangguibao 已提交
324 325
  for (int i = 0; i < FLAGS_concurrency; ++i) {
    thread_pool.push_back(new std::thread(thread_worker, &api, i, data_list));
X
xulongteng 已提交
326
  }
W
wangguibao 已提交
327 328

  for (int i = 0; i < FLAGS_concurrency; ++i) {
X
xulongteng 已提交
329 330 331
    thread_pool[i]->join();
    delete thread_pool[i];
  }
W
wangguibao 已提交
332 333 334

  calc_time(FLAGS_concurrency, batch_size);

X
xulongteng 已提交
335 336 337
  api.destroy();
  return 0;
}