ctr_prediction.cpp 10.2 KB
Newer Older
X
xulongteng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <string>
#include <thread>  // NOLINT
#include "sdk-cpp/ctr_prediction.pb.h"
#include "sdk-cpp/include/common.h"
#include "sdk-cpp/include/predictor_sdk.h"
using baidu::paddle_serving::sdk_cpp::Predictor;
using baidu::paddle_serving::sdk_cpp::PredictorApi;
using baidu::paddle_serving::predictor::ctr_prediction::Request;
using baidu::paddle_serving::predictor::ctr_prediction::Response;
using baidu::paddle_serving::predictor::ctr_prediction::CTRReqInstance;
using baidu::paddle_serving::predictor::ctr_prediction::CTRResInstance;

W
wangguibao 已提交
33
int batch_size = 16;
X
xulongteng 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
int sparse_num = 26;
int dense_num = 13;
int thread_num = 1;
int hash_dim = 1000001;
std::vector<float> cont_min = {0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> cont_diff = {
    20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50};
char* data_filename = "./data/ctr_prediction/data.txt";
std::atomic<int> g_concurrency(0);
std::vector<std::vector<int>> response_time;

std::vector<std::string> split(const std::string& str,
                               const std::string& pattern) {
  std::vector<std::string> res;
  if (str == "") return res;
  std::string strs = str + pattern;
  size_t pos = strs.find(pattern);
  while (pos != strs.npos) {
    std::string temp = strs.substr(0, pos);
    res.push_back(temp);
    strs = strs.substr(pos + 1, strs.size());
    pos = strs.find(pattern);
  }
  return res;
}

W
wangguibao 已提交
60 61 62 63 64 65 66 67 68
/**
 * Simulate CPython hash function on string objects
 *
 * Our model training process use this function to convert string objects to
 * unique ids.
 *
 * See string_hash() in
 * https://svn.python.org/projects/python/trunk/Objects/stringobject.c
 */
X
xulongteng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
int64_t hash(std::string str) {
  int64_t len;
  unsigned char* p;
  int64_t x;

  len = str.size();
  p = (unsigned char*)str.c_str();
  x = *p << 7;
  while (--len >= 0) {
    x = (1000003 * x) ^ *p++;
  }
  x ^= str.size();
  if (x == -1) {
    x = -2;
  }
  return x;
}

int create_req(Request* req,
               const std::vector<std::string>& data_list,
               int data_index,
               int batch_size) {
  for (int i = 0; i < batch_size; ++i) {
    CTRReqInstance* ins = req->add_instances();
    if (!ins) {
      LOG(ERROR) << "Failed create req instance";
      return -1;
    }
    // add data
W
wangguibao 已提交
98 99 100 101 102 103
    // avoid out of boundary
    int cur_index = data_index + i;
    if (cur_index >= data_list.size()) {
      cur_index = cur_index % data_list.size();
    }
    std::vector<std::string> feature_list = split(data_list[cur_index], "\t");
X
xulongteng 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    for (int fi = 0; fi < dense_num; fi++) {
      if (feature_list[fi] == "") {
        ins->add_dense_ids(0.0);
      } else {
        float dense_id = std::stof(feature_list[fi]);
        dense_id = (dense_id - cont_min[fi]) / cont_diff[fi];
        ins->add_dense_ids(dense_id);
      }
    }
    for (int fi = dense_num; fi < (dense_num + sparse_num); fi++) {
      int64_t sparse_id =
          hash(std::to_string(fi) + feature_list[fi]) % hash_dim;
      if (sparse_id < 0) {
        // diff between c++ and python
        sparse_id += hash_dim;
      }
      ins->add_sparse_ids(sparse_id);
    }
  }
  return 0;
}
void print_res(const Request& req,
               const Response& res,
               std::string route_tag,
               uint64_t mid_ms,
               uint64_t elapse_ms) {
  if (res.err_code() != 0) {
    LOG(ERROR) << "Get result fail :" << res.err_msg();
    return;
  }
  for (uint32_t i = 0; i < res.predictions_size(); ++i) {
    const CTRResInstance& res_ins = res.predictions(i);
    std::ostringstream oss;
W
wangguibao 已提交
137
    oss << "[" << res_ins.prob0() << " " << res_ins.prob1() << "]";
X
xulongteng 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    LOG(INFO) << "Receive result " << oss.str();
  }
  LOG(INFO) << "Succ call predictor[ctr_prediction_service], the tag is: "
            << route_tag << ", mid_ms: " << mid_ms
            << ", elapse_ms: " << elapse_ms;
}

void thread_worker(PredictorApi* api,
                   int thread_id,
                   int batch_size,
                   int server_concurrency,
                   const std::vector<std::string>& data_list) {
  // init
  Request req;
  Response res;
  api->thrd_initialize();
  std::string line;
  int turns = 0;
  while (turns < 1000) {
    timeval start;
    gettimeofday(&start, NULL);
    api->thrd_clear();
    Predictor* predictor = api->fetch_predictor("ctr_prediction_service");
    if (!predictor) {
      LOG(ERROR) << "Failed fetch predictor: ctr_prediction_service";
      return;
    }
    req.Clear();
    res.Clear();
    timeval mid;
    gettimeofday(&mid, NULL);
    uint64_t mid_ms = (mid.tv_sec * 1000 + mid.tv_usec / 1000) -
                      (start.tv_sec * 1000 + start.tv_usec / 1000);
    // wait for other thread
    while (g_concurrency.load() >= server_concurrency) {
    }
    g_concurrency++;
    LOG(INFO) << "Current concurrency " << g_concurrency.load();
    int data_index = turns * batch_size;
X
xulongteng 已提交
177
    if (create_req(&req, data_list, data_index, batch_size) != 0) {
X
xulongteng 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
      return;
    }
    timeval start_run;
    gettimeofday(&start_run, NULL);
    if (predictor->inference(&req, &res) != 0) {
      LOG(ERROR) << "failed call predictor with req:" << req.ShortDebugString();
      return;
    }
    timeval end;
    gettimeofday(&end, NULL);
    uint64_t elapse_ms = (end.tv_sec * 1000 + end.tv_usec / 1000) -
                         (start_run.tv_sec * 1000 + start_run.tv_usec / 1000);
    response_time[thread_id].push_back(elapse_ms);
    print_res(req, res, predictor->tag(), mid_ms, elapse_ms);
    g_concurrency--;
    LOG(INFO) << "Done. Current concurrency " << g_concurrency.load();
    turns++;
  }
  //
  api->thrd_finalize();
}
void calc_time(int server_concurrency, int batch_size) {
  std::vector<int> time_list;
  for (auto a : response_time) {
    time_list.insert(time_list.end(), a.begin(), a.end());
  }
  LOG(INFO) << "Total request : " << (time_list.size());
  LOG(INFO) << "Batch size : " << batch_size;
  LOG(INFO) << "Max concurrency : " << server_concurrency;
  float total_time = 0;
  float max_time = 0;
  float min_time = 1000000;
  for (int i = 0; i < time_list.size(); ++i) {
    total_time += time_list[i];
    if (time_list[i] > max_time) max_time = time_list[i];
    if (time_list[i] < min_time) min_time = time_list[i];
  }
  float mean_time = total_time / (time_list.size());
  float var_time;
  for (int i = 0; i < time_list.size(); ++i) {
    var_time += (time_list[i] - mean_time) * (time_list[i] - mean_time);
  }
  var_time = var_time / time_list.size();
  LOG(INFO) << "Total time : " << total_time / server_concurrency
            << " Variance : " << var_time << " Max time : " << max_time
            << " Min time : " << min_time;
  float qps = 0.0;
  if (total_time > 0)
    qps = (time_list.size() * 1000) / (total_time / server_concurrency);
  LOG(INFO) << "QPS: " << qps << "/s";
  LOG(INFO) << "Latency statistics: ";
  sort(time_list.begin(), time_list.end());
  int percent_pos_50 = time_list.size() * 0.5;
  int percent_pos_80 = time_list.size() * 0.8;
  int percent_pos_90 = time_list.size() * 0.9;
  int percent_pos_99 = time_list.size() * 0.99;
  int percent_pos_999 = time_list.size() * 0.999;
  if (time_list.size() != 0) {
    LOG(INFO) << "Mean time : " << mean_time;
    LOG(INFO) << "50 percent ms: " << time_list[percent_pos_50];
    LOG(INFO) << "80 percent ms: " << time_list[percent_pos_80];
    LOG(INFO) << "90 percent ms: " << time_list[percent_pos_90];
    LOG(INFO) << "99 percent ms: " << time_list[percent_pos_99];
    LOG(INFO) << "99.9 percent ms: " << time_list[percent_pos_999];
  } else {
    LOG(INFO) << "N/A";
  }
}
int main(int argc, char** argv) {
  // initialize
  PredictorApi api;
  response_time.resize(thread_num);
  int server_concurrency = thread_num;
// log set
#ifdef BCLOUD
  logging::LoggingSettings settings;
  settings.logging_dest = logging::LOG_TO_FILE;
  std::string log_filename(argv[0]);
  log_filename = log_filename.substr(log_filename.find_last_of('/') + 1);
  settings.log_file = (std::string("./log/") + log_filename + ".log").c_str();
  settings.delete_old = logging::DELETE_OLD_LOG_FILE;
  logging::InitLogging(settings);
  logging::ComlogSinkOptions cso;
  cso.process_name = log_filename;
  cso.enable_wf_device = true;
  logging::ComlogSink::GetInstance()->Setup(&cso);
#else
  struct stat st_buf;
  int ret = 0;
  if ((ret = stat("./log", &st_buf)) != 0) {
    mkdir("./log", 0777);
    ret = stat("./log", &st_buf);
    if (ret != 0) {
      LOG(WARNING) << "Log path ./log not exist, and create fail";
      return -1;
    }
  }
  FLAGS_log_dir = "./log";
  google::InitGoogleLogging(strdup(argv[0]));
  FLAGS_logbufsecs = 0;
  FLAGS_logbuflevel = -1;
#endif
  // predictor conf
  if (api.create("./conf", "predictors.prototxt") != 0) {
    LOG(ERROR) << "Failed create predictors api!";
    return -1;
  }
  // read data
  std::ifstream data_file(data_filename);
  if (!data_file) {
    std::cout << "read file error \n" << std::endl;
    return -1;
  }
  std::vector<std::string> data_list;
  std::string line;
  while (getline(data_file, line)) {
    data_list.push_back(line);
  }
  // create threads
  std::vector<std::thread*> thread_pool;
  for (int i = 0; i < server_concurrency; ++i) {
    thread_pool.push_back(new std::thread(thread_worker,
                                          &api,
                                          i,
                                          batch_size,
                                          server_concurrency,
                                          std::ref(data_list)));
  }
  for (int i = 0; i < server_concurrency; ++i) {
    thread_pool[i]->join();
    delete thread_pool[i];
  }
  calc_time(server_concurrency, batch_size);
  api.destroy();
  return 0;
}