README_CN.md 3.8 KB
Newer Older
G
guru4elephant 已提交
1 2
# Paddle Serving

J
Jiawei Wang 已提交
3 4
(简体中文|[English](./README.md))

G
guru4elephant 已提交
5 6 7 8 9 10 11 12 13
Paddle Serving是PaddlePaddle的在线预估服务框架,能够帮助开发者轻松实现从移动端、服务器端调用深度学习模型的远程预测服务。当前Paddle Serving以支持PaddlePaddle训练的模型为主,可以与Paddle训练框架联合使用,快速部署预估服务。Paddle Serving围绕常见的工业级深度学习模型部署场景进行设计,一些常见的功能包括多模型管理、模型热加载、基于[Baidu-rpc](https://github.com/apache/incubator-brpc)的高并发低延迟响应能力、在线模型A/B实验等。与Paddle训练框架互相配合的API可以使用户在训练与远程部署之间无缝过度,提升深度学习模型的落地效率。

------------

## 快速上手指南

Paddle Serving当前的develop版本支持轻量级Python API进行快速预测,并且与Paddle的训练可以打通。我们以最经典的波士顿房价预测为示例,完整说明在单机进行模型训练以及使用Paddle Serving进行模型部署的过程。

#### 安装
B
barrierye 已提交
14 15 16

强烈建议您在Docker内构建Paddle Serving,请查看[如何在Docker中运行PaddleServing](doc/RUN_IN_DOCKER_CN.md)

G
guru4elephant 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
```
pip install paddle-serving-client
pip install paddle-serving-server
```

#### 训练脚本
``` python
import sys
import paddle
import paddle.fluid as fluid

train_reader = paddle.batch(paddle.reader.shuffle(
    paddle.dataset.uci_housing.train(), buf_size=500), batch_size=16)

test_reader = paddle.batch(paddle.reader.shuffle(
    paddle.dataset.uci_housing.test(), buf_size=500), batch_size=16)

x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')

y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)

place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

import paddle_serving_client.io as serving_io

for pass_id in range(30):
    for data_train in train_reader():
        avg_loss_value, = exe.run(
            fluid.default_main_program(),
            feed=feeder.feed(data_train),
            fetch_list=[avg_loss])

serving_io.save_model(
    "serving_server_model", "serving_client_conf",
    {"x": x}, {"y": y_predict}, fluid.default_main_program())
```

#### 服务器端代码
``` python
import sys
from paddle_serving.serving_server import OpMaker
from paddle_serving.serving_server import OpSeqMaker
from paddle_serving.serving_server import Server

op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')

op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)

server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
```

#### 服务器端启动
``` shell
python test_server.py serving_server_model
```

#### 客户端预测
``` python
from paddle_serving_client import Client
import paddle
import sys

client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])

test_reader = paddle.batch(paddle.reader.shuffle(
    paddle.dataset.uci_housing.test(), buf_size=500), batch_size=1)

for data in test_reader():
    fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["y"])
    print("{} {}".format(fetch_map["y"][0], data[0][1][0]))

```

### 文档

[设计文档](doc/DESIGN.md)

[FAQ](doc/FAQ.md)

### 资深开发者使用指南

[编译指南](doc/INSTALL.md)

## 贡献
如果你想要给Paddle Serving做贡献,请参考[贡献指南](doc/CONTRIBUTE.md)